您好,欢迎访问三七文档
数学(文)教学计划(一)集合1.集合的含义与表示(1)了解集合的含义,元素与集合的关系(属于或不属于).(2)能用集合的表示方法(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单的集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合间的关系及运算.(二)函数概念与基本初等函数I(指数函数、对数函数、幂函数)1.函数(1)了解函数的定义域、对应法则和值域,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解分段函数的含义,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大值、最小值及其几何意义;了解函数奇偶性含义.(5)会运用函数的图像分析函数的性质.2.指数函数(1)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(2)理解指数函数的概念及其单调性,知道指数函数图像通过的特殊点.(3)了解指数函数模型的实际背景3.对数函数(1)理解对数的概念及其运算性质,会用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,知道对数函数图像通过的特殊点.(3)了解指数函数xay与对数函数xyalog互为反函数(a>0,且a≠1)4.幂函数(1)了解幂函数的概念.(2)结合函数的图像,了解它们的变化情况.5.函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及实根的个数.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.(3)会用平行投影法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下的公理和定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.[来源:学|科|网Z|X|X|K]公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理:。如果平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.。如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.。如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.。如果一个平面过另一个平面的垂线,那么这两个平面互相垂直.理解并能够证明以下性质定理:。如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.。如果两个平行平面和第三个平面相交,那么它们的交线相互平行.。垂直于同一个平面的两条直线平行.。如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.(3)能证明有关点、直线、平面之间的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(2)能根据两条直线的斜率判定这两条直线是否平行或垂直.(3)掌握确定直线位置关系的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(4)能用解方程组的方法求两相交直线的交点坐标.(5)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线之间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据直线和圆的方程判断直线与圆的位置关系;能根据两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)了解空间两点间的距离公式.[来源:Z#xx#k.Com](五)算法初步1.算法的含义、程序框图(1)了解算法的含义.(2)了解框图程序的含义,理解程序框图的三种基本逻辑结构:顺序、条件、循环。2.基本算法语句理解几种基本算法语句-----輸入语句、輸出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差。(3)能从样本数据中提取基本的数字特征(如平均数、中位数、众数、极差和标准差).并给出合理的解释。(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系(正相关、负相关、不相关).(2)能根据给出的线性回归方程系数公式建立一元线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型[来源:学+科+网](1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义,能计算一些事件发生的概率。(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角的正弦、余弦、正切的定义.(2)了解的正弦、余弦、正切的诱导公式和2的正弦、余弦、正切的诱导公式,能画出xyxyxytan,cos,sin的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与x轴的交点等).理解正切函数在区间)2,2(内的单调性.(4)理解同角三角函数的以下两个基本关系式:1cossin22xx,xxxtancossin(5)了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法和减法的运算,并理解其几何意义.(2)掌握向量数乘的运算,并理解其几何意义;理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.两角和与差的三角函数公式(1)掌握两角和与差的正弦、余弦公式.(2)了解两角和与差的正切公式.(3)了解二倍角的正弦、余弦、正切公式.2.简单的三角恒等变换能运用上述公式进行简单的三角恒等变换.(十一)解三角形1.正弦定理和余弦定理.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和两种简单的表示方法(列表、通项公式).(2)了解数列是的一类特殊函数,即自变量为正整数的函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数的关系、等比数列与指数函数的关系.[来源:Z,xx,k.Com](十三)不等式1.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过二次函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,会设计求解一元二次不等式的程序框图.2.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.3.基本不等式:(1)了解基本不等式(abba2,其中0,ba)的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析这四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.2.简单逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的含义.(2)能正确地对含一个量词的命题进行否定.(十五)圆锥曲线与方程1.圆锥曲线(1)掌握椭圆的定义、几何图形、标准方程和简单的几何性质(范围、对称性及焦点、顶点、离心率等相关的性质)(2)了解双曲线抛物线的定义、几何图形和标准方程,知道它的简单的几何性质(范围、对称性及焦点、顶点、离心率、双曲线的渐近线、抛物线的准线等相关的性质)(3)理解数形结合的思想.(4)了解圆锥曲线的简单应用.(十六)导数及其应用1.导数的概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)·知道下列函数的导数公式:(C为常数);,n∈N+;;;;(a0,且a≠1);;(a0,且a≠1).(2)·常用的导数运算法则:法则1.法则2.法则3.(3)能利用上面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。3.导数在研究函数中的应用(1)了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.(十七)统计案例(1)了解回归分析的基本思想。(2)会根据所给数据),(11yx,),(22yx,……,),(nnyx求一元线性
本文标题:数学(文)教学计划
链接地址:https://www.777doc.com/doc-2425774 .html