您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 数学在经济管理中的应用
随着社会的进步,随着现代经济的飞速发展,高等数学知识在社会各个领域的应用日益广泛,很显然高等数学理论在其中确实发挥出了十分积极的作用,这些都在实践中得到了运用与验证。当代西方经济工作者认为,经济学的基本方法是首先对经济变量之间的关系进行精准的分析,利用高等数学知识建立相应的经济模型,使得人们能从理论上分析有关的经济模型,从而给出合理的解释,并且从中引申出经济原则和理论,更好的对经济建设起指导作用,已经有越来越多的人认识到高等数学与现代经济管理是相辅相成的,它们相互促进,共同发展。从长远的角度看,高度抽象的数学理论的发展,定会使数学与经济学,乃至整个客观世界更深刻、更复杂、而又更奇妙地联系着,这无疑给了数学这门古老的、周密的、深刻的经典科学在当今社会大放异彩的机会,更加凸显了数学是科学界的一朵奇葩。高等数学理论应用于现代经济管理的可行性分析现代经济管理是经济学门类的综合性应用学科,它融社会科学、自然科学等多学科知识,侧重于总结、摸索实践经验,追求数据分析预测的精准性与思维逻辑的严密性。研究的对象主要是社会的资源配置及社会的经济关系如何进行合理调节与组织的规律与方法。如:通过对财务状况的研究,对未来形势进行预测;通过对国民经济管理研究,分析各种可以预见的经济问题;通过对财政与税收的研究,对财政收入、财政支出、税收、财政管理体制、财政政策等问题进行分析研究。由此可见,经济数据的分析与预测在现代经济管理中占有一定份量,有必要借助和运用高等数学这一严密、精确、实用的思维工具来解决一些经济问题。那么,让我们来看几个高等数学知识在经济管理方面的应用实例。一、导数在最佳营运资金决策上的应用导数是什么呢?简单来说,导数是函数关于自变量的变化率,在经济学中,也存在变化率的问题。因此我们可以把微观经济学中的很多问题归结到数学中来,用我们所学的导数知识加以研究并解决。经济活动的目的,除了考虑社会效益,对于一个具体的公司,决策者更多的是考虑经营的成果,如何降低成本,提高利润;如何能让公司的资金最大程度的周转,来使公司具备最佳的偿债能力等问题。营运资金又是什么呢?营运资金,也叫营运资本。广义的营运资金又称总营运资本,是指一个企业投放在流动资产上的资金,具体包括现金、有价证券、应收账款、存货等占用的资金。狭义的营运资金是指某时点内企业的流动资产与流动负债的差额。其作用是,可以用来衡量公司或企业的短期偿债能力,其金额越大,代表该公司或企业对于支付义务的准备越充足,短期偿债能力越好。当营运资金出现负数,也就是一家企业的流动资产小于流动负债时,这家企业的营运可能随时因周转不灵而中断。一家企业的营运资金到底多少才算足够,才称得上具备良好的偿债能力,是决策的关键。如何能让企业具备最佳的偿债能力,这就可以用到导数来进行计算其最佳营运资金。设T为一个周期内现金总需求量,F为每次转换有价证券的固定成本,Q为最佳现金持有量,K为有价证券利息率,TC为现金管理相关总成本。根据公式:现金管理相关总成本=持有机会成本+固定性转换成本,我们可以得出:|)/()2/(FQTKQTC令:|0dQdTC得:TFKQ2所求的Q的值就是其最佳营运资金。上述导数在的经济分析中的应用,只是数学在浩人烟海的经济应用中点滴晶莹的水花,其应用颇为广泛。不仅此而已,对企业经营者来说,对其经济环节进行定量分析是非常必要的。将数学作为分析工具,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角,这是数学应用性的具体体现。因此,作为一个合格的企业经营者,应该掌握相应的数学分析方法,二、微分方程在新产品的推广中的应用微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。逻辑斯谛方程,即常微分方程其意义:当一个物种迁入到一个新生态系统中后,其数量会发生变化。假设该物种的起始数量小于环境的最大容纳量,则数量会增长。设有某种新产品要推向市场,t时刻的销量为x(t),由于产品性能良好,每个产品都是一个宣传品,因此t时刻产品销量的增长率与x(t)成正比,同时考虑到产品销量存在一定的市场容量N,统计表明与尚未购买该产品的潜在顾客的数量N-x(t)也成正比,于是有:|)(xNkxdtdx符合逻辑斯谛(Logistic)方程的模型,其通解为|1)(kNtceNtx22)1(kNtkNtcekecNdtdx,|)1()1(23222kNtkNtkNtceceeNckdtxd当|)(Ntx,有0dtdx,表明销量单调增加,当|2)(Ntx时,022dtxd;|2)(Ntx时,|022dtxd;|2)(Ntx时,|022dtxd即当销量达到最大需求量N的一半时,产品最畅销,当销量不足一半时,销量速度不断增大,当销量超过一半时,销量速度逐渐减少。研究与调查表明:许多产品的销售曲线与Logistic曲线十分接近,许多分析家认为,在新产品推出的初期,应采用小批量生产并加强广告宣传,而在产品用户达到20%到80%期间,产品应大批量生产,在产品用户超过80%时,应适时转产,可以达到最大的经济效益。利用微分方程理论针对各种实际问题建立的数学模型。一般而言都是动态模型,虽然它的推导过程稍显繁琐,但是其结果却相当简明,并且可以给出合理的解释,从而很好的指导了新产品的推广。三、概率与数理统计在风险衡量中的应用概率与数理统计是研究随机现象的一门学科;是对未来和未知进行展望和判断,以求合理的使用人力、物力、财力、高瞻远瞩地获得最大经济效益已广泛的应用于经济管理领域中。风险通常是指某种行动结果所具有的变动性,是财务管理中的一个很重要的概念,在风险的衡量中用到的主要是随机变量的数学期望、方差、标准离差率、协方差等。现在的公司企业将期望和方差运用到管理估算的决策中。期望和方差的数字特征含义可以帮助我们进行合理的选择,为我们科学的决策提供良好的依据,从而最优的实现目标。1.单一资产投资风险衡量。决策者主要通过求标准离差率将决策方案风险加以量化,并据此做出决策:对于单个方案,决策者可根据其标准离差率的大小,并将其通社定的可接受的此项指标最高限制对比,然后进行决策;对于多个方案,选择低风险高收益的方案。例:某企业由A、B两个投资项目,两个投资项目的收益率及其概率分布情况如表所示:项目实施情况该种情况出现的概率投资收益率项目A项目B项目A项目B好0.200.3015%20%一般0.600.4010%15%差0.200.300—10%%902.0%106.0%152.0EA%9%)10(3.0%154.0%203.0EB049.0)09.00(2.0)09.010.0(6.0)09.015.0(2.0)()(2222iniiPEXA同理126.0)(B|%140)(%,44.5409.0049.0)(BVAV可以看出A的风险较大。2.投资组合风险的衡量。投资者通常不是把自己的全部资金都投放在单一资产上,而是同时向多项资产投资。这时投资组合的总风险由投资组合收益率的方差和标准离差(p)来衡量。|)(2212122222121RRCov例:某企业拟分别投资与A资产和B资产,其中投资与A资产的期望收益率为8%,计划投资500万元;投资于B资产的期望收益率为12%,计划投资500万元。假设投资A、B资产期望收益率的标准离差均为9%。计算相关系数为+1时,投资组合的p。|1%,9%,9%,50%,50122121WW|0081.0),(122121RRCov|09.00081.05.05.0209.05.009.05.02222p通过上述例子我们可以看出,决策者在决策前后,往往存在许多不能知晓的可变因素,从而所作出的决策不一定符合客观实际情况,所以决策是有风险的。只有符合客观环境的科学的决策才能使决策者获得最大的经济利润,才能尽可能地节约成本。而通过概率与数理统计的分析可以帮助我们进行合理的选择,为我们的科学决策提供良好的依据,从而最优的实现目标。四、高等数学建模分析处理经济管理问题一般来说,数学不能直接处理经济管理领域的客观情况。为了能用数学解决经济管理领域中的问题,就必须建立数学模型。数学模型是为了解决经济管理领域中的问题而作的一个抽象的、简化结构的数学刻画。或者说,经济管理中的数学模型就是为了管理的经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻画。在现代经济管理中,经济数据与形势的预测和分析是一项重要的任务。鉴于此,要将高等数学的理论应用于现代经济管理之中,首先就是要将一个待解决的经济问题归纳总结为与之相对应的数学(或数字)问题,而后运用对应的数学理论,去分析经济问题,得出分析的结果。而这个思维过程,其本身就是高等数学的一个基本理论,即数学建立模型的过程。同时,针对不同类型经济管理问题我们需要建立不同的数学模型如:供需与价格关系数学模型、边际收益模型、价格弹性模型、经济增长的索罗模型、生产函数模型、均衡价格的差分方程模型、利益分配的合作博弈模型、乘数加速数模型、投入产出模型、经济增长与最优财政支出规模模型、税收收入AR预测模型、消费税税率优化设计模型、斯坦克伯格双寡头垄断动态博弈模型等等。在这里需要注意的是,由于经济始终处于动态变化之中,在经济管理中建立数学模型要根据实际问题区别对待和解决,要将所建立数学模型的适用性与准确性放在首位进行考虑,因为在经济学历史上能够经过实践验证,为经济管理人士所普遍应用的数学模型多具有一定的代表性,且能描述事物总体趋势的数学模型。既然数学建模在经济管理中有如此重要的应用,那么,如何准确的进行数学建模就尤为重要。要尽量使所建立的模型精准明确、有据可依、简便实用,要尽量运用标准的数学模型,并要遵循如下步骤:1.模型准备。要对准备建模的经济管理问题进行周密的调研了解,明确预期目的。通过对问题所涉及的基本情况进行调研和了解,以获取所需的数据资料,并对其进行分组划类。因为经济数据资料的完备性关系到假设是否成立及数学模型对经济分析与预测的质量与精确程度。2.模型假设。在明确建模目的,掌握必要经济数据的前提上,通过对各组数据进行综合计算分析,找出起决定性作用的经济数据,确定其为主要的变量,对次要的数据予以适当忽略,并提出假设。在这里需要明确的是,经济管理问题的不同假设对经济分析与预测将起到至关重要的影响,所以在进行假设的过程中,要多层次、多角度地进行综合考虑,要将经济活动的内在规律、数据来源的分析以及经验都要作为假设的理论依据,抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化,写出假设时,语言要精确。3.建立模型。根据所做的假设,将经济管理问题运用数学语言进行描述,建立出相应的数学结构,得出数学模型。在建模过程中应注意区分变量的不同类型,并合理地运用数学的工具,如:确定型的变量大多用微积分、线性规划、图论、微分方程、网络等,随意的变量多用随机微分方程、统计、概率等。同时还要注意简化变量之间的关系,建模要精确,符合经济问题对数字精度的要求。4.模型验证。有了模型之后要反复的推敲,要分析模型能否真正的反映现实问题,能否说明变量之间的关系。还要考虑模型是否有解,有什么样的解,求解过程是否简便,以及有无矛盾之处等。此外,模型的解也可以带入到现实问题中加以验证,看能否解决现实问题,这一点也是至关重要的。5.模型求解。可以通过计算软件或相应程序在计算机上对经济管理问题开展模拟试验,对假设方案进行比较与筛选。6.模型改进。模型必须不断地验证,不断检验,不断完善。在建模过程中,要重视出现的问题,针对问题加以分析,检查建模时的假设和前提是否正确,考虑变量之间关系能否进行重新调整,
本文标题:数学在经济管理中的应用
链接地址:https://www.777doc.com/doc-2426706 .html