您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 数学必修模块2教学研究(人教A版高中数学必修②教案)
《数学必修模块2教学研究》海南省国兴中学颜仁海陆臻许启良韩勋一、教学实录(一)在本模块的教学中,对课标和教材所作的研究内容:为了更好地组织实施好本模块的教学,我们高一年级数学备课组成员以问题为载体,主要对如下课题进行了研究:(1)课标中所提倡的教育理念是什么?;(2)新课标与原来的教学大纲有什么不同?(3)本模块的教学内容包括哪些,每一部分的教学内容是如何展开和深入的,它所需要达到的三维目标是什么?(4)新教材与旧教材比较,在内容和结构特征上都发生了哪些变化?为什么这样变化,它所要达到的目的是什么?(5)如何把握立体几何初步和平面解析几何初步的教学难度?(二)本模块教学实际上所花费的时间及其原因包括考试在内,完成《数学2》教学,我们一共花了44课时,比课程标准的要求多了8课时.其中的主要原因有:(1)学生基础薄弱;(2)教科书整体编排内容覆盖面过广且容量大;(3)虽然学生经过第一个学段的学习后,学习方式有了转变,但转变的幅度还不够大,还不能完全适应新课程的需要.为了面向全体学生,夯实学生基础,我们只好增加课时,稍微放慢了教学进度,尽可能让每个学生不但学会,而且会学和乐学.(三)教学体会第一通过对《数学2》的教学,我们深切体会到它具有如下特色:1、在内容安排上,通过研读课标和作新旧教材的如下对比,我们发现新课程《数学2》中立体几何初步的内容体现了从整体到局部,从具体到抽象的原则.而旧教材这部分的内容遵循的是从局部到整体的原则.全日制普通高级中学教科书(实验修订本.必修)人教A数学2第九章直线、平面、简单几何体一空间直线和平面9.1平面9.2空间直线9.3直线和平面平行的判定和性质9.4直线和平面垂直的判定和性质9.5两个平面平行的判定和性质9.6两个平面垂直的判定和性质9.7棱柱9.8棱锥研究性学习课题:多面体欧拉公式的发现9.9球小结与复习第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题同时在内容的难度要求上,《数学2》与旧教材比较,难度进行了降低,并且引入了合情推理.《数学2》中解析几何初步的内容安排遵循了阶段性、螺旋式上行的原则,而旧教材遵循的是连续性、一步到位的原则.全日制普通高级中学教科书(实验修订本.必修)人教A数学2第七章直线和圆的方程第三章直线与方程7.1直线的倾斜角和斜率7.2直线的方程7.3两条直线的位置关系7.4简单的线性规划7.5研究性课题与实习作业:线性规划的实际应用7.6曲线和方程7.7圆的方程7.8小结与复习第八章圆锥曲线方程一椭圆二双曲线三抛物线3.1直线的倾斜角与斜率探究与发现魔术师的地毯3.2直线的方程3.3直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1圆的方程阅读与思考坐标法与机器证明4.2直线、圆的位置关系4.3空间直角坐标系信息技术应用用《几何画板》探究点的轨迹(圆)小结复习参考题2、突显“数学探究”和“数学文化”.从上表中我们不难发现《数学2》的这个特点.3、所选择的素材贴近学生的生活实际,激发了学生学习数学的兴趣,并且在生活中自觉树立起了数学意识.如在第一章空间几何体中,习题1.2B组第1题:右图是一个哑铃,说出它的几何结构特征,并画出它的三视图;1.3.2球的体积和表面积中的例5:图1.3-10表示一个用鲜花做成的花柱,它的下面是一个直径为1m、高为3m的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花?;本章复习参教题A组第7题:为了欢度新年,高一(1)班订购了一个三层大蛋糕,如果蛋糕外层均匀包裹着厚度为0.1cm,密度为0.7g/cm3的奶油,那么全班同学约吃掉多少克奶油?;又如4.2直线、圆的位置关系的引例问题:一艘轮船沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径为30km的圆形区域.已知港口位于台风中心正北40km处,如果这艘轮船不改变航线,那么它是否受到台风的影响.4.2.3直线与圆的方程的应用一节中的例4以及课后练习题的第2和3题.这些素材,都较好地反映了学生的生活实际,我们发现学生通过学习《数学2》了以后,学生的应用意识得到进一步增强,实践能力得到进一步提高.4、注重与各学科之间的融合.如(1)与信息技术的.在教材中多处提到用信息技术探索数学问题,如习题3.1第6题:经过点(0,-1)作直线l,若直线l与连结A(1,-2),B(2,1)的线段总有公共点,借助信息技术工具,找出直线l的倾斜角与斜率k的取值范围,并说明理由.习题3.2B组第6题:用信息技术工具画出直线l:032yx,并在平面上取若干点,度量它们的坐标,将这些点的坐标代入32yx,求它的值,观察有什么规律.习题4.1B组第3题:已知点M与两个定点O(0,0),A(3,0)的距离的比为21,先利用信息技术手段,探求点M的轨迹,然后求出它的方程.第四章复习参考题B组第6题:已知圆C:,252122yx直线047112:mymxml.①求证:直线l过定点.②运用信息技术,判断直线l被圆C载得的弦何时最长,何时最短?并求截得的弦长最短时m的值,以及最短长度.在阅读材料中,根据需要穿插了“信息技术应用”栏目.通过与信息技术的融合,提高了学生探索、发现和解决数学问题的能力,有利于学生认识数学的本质.(2)与物理和化学的融合.如习题3.2A组的第6、第7和第11题等.通过与其他学科的融合,帮助学生在学习的过程中,自觉树立起了联系的观点,拓展了学生对问题的认识深度和广度,有利于学生体验数学作为基础学科的价值.5、在教科书中,各节根据需要,开设了“思考”、“观察”和“探究”等栏目,把学生作为学习的主体来编排内容,符合新课程的理念.有利于学生开展自主和合作学习,实现教师教学和学生学习双重行为方式的转变.6、在教材中所穿插的“阅读与思考”等内容,能很好地反映数学的历史、数学的应用和发展的最新信息,有利于帮助学生认识数学是人类文化的重要组成部分.7、在编排方面.在每章均有章头图和引言,作为本章内容的导入,使学生对该章学习的内容产生悬念,发生兴趣,从而初步了解学习该章内容的必要性.8、增加了教材旁注,并且多处提到解决问题的基本数学思想方法.如直线与平面平行判定定理的旁注:定理告诉我们,可以通过直线间的平行,推证直线与平面平行.这是处理空间位置关系一种常用方法,即将直线与平面平行关系(空间问题)转化为直线间平行关系(平面问题).紧跟着例1完了以后,又指出:今后要证明一条直线与一个平面平行,只要在这个平面内找出一条直线与已知直线平行,就可以断定已知直线与这个平面平行.这有利于提高学生自主学习的能力,使学生不但学会数学,而且会学数学.第二根据新课程的特色,我们积极探索和实践,转变教学方式,努力实现新课程理念和编者的意图:1、认真研读课标,站在一个整体、全局的高度把握好教学的深浅度.(1)从整套教材来看,几何教学、学习的要求不是一步到位,而是分阶段,分层次,多角度的.一共分为三个阶段:第一阶段必修课程:数学2:立体几何初步、解析几何初步.第二阶段选修系列1和系列2:系列1和系列2:圆锥曲线与方程;系列2:空间向量与立体几何.第三阶段选修系列3,4系列3-1,数学史选讲中的部分专题:2.古希腊数学毕达哥拉斯多边形数,从勾股定理到勾股数,不可公度问题.欧几里得与《几何原本》,演绎逻辑系统,第五公设问题,尺规作图,公理化思想对近代科学的深远影响.阿基米德的工作:求积法.4.平面解析几何的产生——数与形的结合函数与曲线.笛卡儿方法论的意义.7.千古谜题——伽罗瓦的解答几何作图三大难题系列3-3,球面上的几何;系列3-5,欧拉公式与闭曲面分类;系列3-6,三等分角与数域扩充;系列4-1,几何证明选讲;系列4-4,坐标系与参数方程立体几何的学习也是分层次的:第一层次:对几何体的认识,依赖于学生的直观感受,不做任何推理的要求.第二层次:以长方体为载体(包括其它的实物模型、身边的实际例子)对图形(模型)进行观察、实验和说理.引入合情推理.第三层次:严格的推理证明.如线面平行、垂直的性质定理的证明.第四层次:空间向量与立体几何,用代数的方法研究几何问题.为此,我们在教学时必须进行分阶段,分层次,多角度地教学,更多地关注学生学习的情感,防止学生对立体几何和解析几何的学习出现畏惧心理,丧失学习的信心.(2)正确理解立体几何初步中,较容易处理的问题采用合情推理和综合方法处理,而较难处理的问题放在后面采用代数的方法(选修部分-空间向量与立体几何)的目的.一是有利于刚开始把更多的时间和精力放在培养学生空间感和对数学思想方法的掌握上.二是有利于化难为易,改变学生对立体几何的态度,建立起学生学好立体几何的信心.三是有利于加强了几何与代数的联系,培养学生数形结合的思想,完善学生对数学的认知结构.2、在立体几何初步的教学中,注意利用学生身边的实物模型进行教学,遵循由直观到抽象,由感性认识到理性认识,强调平面问题与空间问题之间的互相转化方法和思想.4、利用“思考”、“观察”和“探究”等栏目,培养学生自主学习的能力和合作学习的精神,增强学生创新的意识.在本模块的教学和学习中,师生所遇到的困难主要有:1、教与学的深浅度不好把握;2、学生的课外辅导用书很多与课标的要求不相符合;3、整体编排内容覆盖面过广且容量大与课时少之间的矛盾;4、学生学习方式和方法还不能适应高中新课程的要求;5、学生用信息技术解决数学问题的能力比较弱.所采取的克服方法:关于第1个困难的克服,上述已经谈及;关于第2个困难的克服,主要是向学生推荐好的学习资料;关于第3个困难的克服,主要抓住教学内容的本质、重点、难点和关键,正确把握好教学深浅度,有放矢地授课,培养学生自主学习和探究的能力,其次利用星期六进行适当辅导;关于第4个困难的克服,主要是通过开设学习方法讲座,向学生介绍自主学习的方式及方法;介绍高中数学的特点及应采取的学习方法;大力开展研究性学习活动;关于第5个困难的克服,主要是利用课余时间,加强对学生使用数学软件能力的培训.特别是让学生学会使用《几何画板》.海南省国兴中学04级高一年级模块终结性考试数学(2)说明:本卷分第一卷和第二卷两部分.第一卷为选择题,第二卷为非选择题.考试时间:120分钟.全卷满分150分.一、选择题(每小题4分,共48分,每小题只有一个正确答案)1、直线053yx的倾斜角是()(A)30°(B)120°(C)60°(D)150°2、如图,平面不能用()表示.(A)平面α(B)平面AB(C)平面AC(D)平面ABCD3、点P(x,y)在直线x+y-4=0上,O是坐标原点,则│OP│的最小值是()(A)7(B)6(C)22(D)54、直线x-2y-2k=0与2x-3y-k=0的交点在直线3x-y=0上,则k的值为()(A)1(B)2(C)1(D)05、有下列四个命题:1)过三点确定一个平面2)矩形是平面图形3)三条直线两两相交则确定一个平面4)两个相交平面把空间分成四个区域其中错误命题的序号是().(A)1)和2)(B)1)和3)(C)2)和4)(D)2)和3)6、下列命题正确的是().A、一直线与一个平面内的无数条直线垂直,则此直线与平面垂直B、两条异面直线不能同时垂直于一个平面C、直线倾斜角的取值范围是:0°θ≤180°D、两异面直线所成的角的取值范围是:0θ90°.7、直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a=()A.-3B.2C.-3或2D.3或-28、两直线3x+2y+m=0和(m2+1)x-3y-3m=0的位置关系是()A.平行B.相交
本文标题:数学必修模块2教学研究(人教A版高中数学必修②教案)
链接地址:https://www.777doc.com/doc-2427108 .html