您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 数据库技术的发展趋势……
Vol.1000-9825/2004/15(12)1822©2004JournalofSoftware软件学报l.15,No.12数据库技术发展趋势∗孟小峰1+,周龙骧2,王珊11(中国人民大学信息学院,北京100872)2(中国科学院数学与系统科学研究院数学研究所,北京100080)StateoftheArtandTrendsinDatabaseResearchMENGXiao-Feng1+,ZHOULong-Xiang2,WANGShan11(InformationSchool,RenminUniversityofChina,Beijing100872,China)2(InstituteofMathematics,AcademyofMathematicsandSystemsSciences,TheChineseAcademyofSciences,Beijing100080,China)+Correspondingauthor:Phn:+86-10-62515575,E-mail:xfmeng@ruc.edu.cn,(12):1822~1836.:Thispaperdiscussesthestateoftheart,thechallengeproblemsthatweface,andthefuturetrendsindatabaseresearchfield.Itcoversthehottopicssuchasinformationintegration,streamdatamanagement,sensordatabasetechnology,XMLdatamanagement,datagrid,self-adaptation,movingobjectmanagement,small-footprintdatabase,anduserinterface.Keywords:database;DBMS;pan-data摘要:讨论目前数据库研究领域中最热门的几个研究方向的发展现状、面临的问题和未来趋势.包括信息集成、数据流管理、传感器数据库技术、XML数据管理、网格数据管理、DBMS自适应、移动数据管理和微小数据库,数据库用户界面等.关键词:数据库;数据库管理系统;泛数据中图法分类号:TP311文献标识码:A∗SupportedbytheNationalNaturalScienceFoundationofChinaunderGrantNos.60073014,60273018(国家自然科学基金);theKeyProjectofMinistryofEducationofChinaunderGrantNo.03044(国家教育部科学技术重点项目);theExcellentYoungTeachersProgramofMinistryofEducationofChina(国家教育部优秀青年教师资助计划)作者简介:孟小峰(1964-),男,博士,教授,博士生导师,主要研究领域为Web数据集成,XML数据库,移动数据管理;周龙骧(1938-),男,研究员,博士生导师,主要研究领域为数据库系统实现技术,分布式数据库技术,电子商务技术;王珊(1944-),女,教授,博士生导师,主要研究领域为数据库,知识库,数据仓库.孟小峰等:数据库技术发展趋势18231泛数据研究的时代数据库技术从诞生到现在,在不到半个世纪的时间里,形成了坚实的理论基础、成熟的商业产品和广泛的应用领域,吸引了越来越多的研究者加入,使得数据库成为一个研究者众多且被广泛关注的研究领域.随着信息管理内容的不断扩展和新技术的层出不穷,数据库技术面临着前所未有的挑战.面对新的数据形式,人们提出了丰富多样的数据模型(层次模型、网状模型、关系模型、面向对象模型、半结构化模型等),同时也提出了众多新的数据库技术(XML数据管理、数据流管理、Web数据集成、数据挖掘等).回顾数据库发展之初,数据模型是制约数据库系统的关键因素.E.FCodd博士(1923-2003)提出的关系模型充分考虑了企业业务数据的特点,从现实问题出发,为数据库建立了一个坚实的数学基础.在整个计算机软件领域,恐怕难以找到第2个像关系模型这样,概念如此简单,但却能带来如此巨大市场价值的技术.关系模型在关系数据库理论基本成熟后,各大学、研究机构和各大公司在关系数据库管理系统(RDBMS)的实现和产品开发中,都遇到了一系列技术问题.主要是在数据库的规模愈来愈大,数据库的结构愈来愈复杂,又有愈来愈多的用户共享数据库的情况下,如何保障数据的完整性、安全性、并发性以及故障恢复的能力,它成为数据库产品是否能够进入实用并最终为用户接受的关键因素.JimGray在解决这些重大技术问题,使RDBMS成熟并顺利进入市场的过程中,发挥了关键作用.概括地说,解决上述问题的主要技术手段和方法是:把对数据库的操作划分为“事务”的基本单位,一个事务要么全做,要么全不做(即all-or-nothing原则);用户在对数据库发出操作请求时,需要对有关的不同数据“加锁”,防止不同用户的操作之间互相干扰;在事务运行过程中,采用“日志”记录事务的运行状态,以便发生故障时进行恢复;对数据库的任何更新都采用“两阶段提交”策略.以上方法及其他各种方法被总称为“事务处理技术”.E.FCodd和JimGray在关系模型和事务处理技术上的创造性思维和开拓性工作,使他们成为这一领域公认的权威,并于分别于1981年和1998年成为图灵奖获得者.在成熟的关系DBMS产品行销于世之后,数据库的研究困惑于如下的问题:DBMS本身的研究是不是已经没有问题了?新的处理要求在哪里?旗帜鲜明地提出这一思考的是VLDB2000会议,会议的主题是“BroadeningtheDatabaseField”,会议的论文设置也截然分为两类,即“coredatabasetechnology”和“informationsystemsinfrastructures”,体现了在对传统问题关注的同时,着力寻求信息系统创新途径中所存在的数据管理问题.而信息系统创新途径的根本前提是Web时代的到来.于是,在Web大背景下的各种数据管理问题成为人们关注的热点,我们不妨把它笼统地称为“泛数据”研究.所谓“泛数据”是相对原本人们所关注的企业业务数据而言的.这是Web时代的到来带给人们的新问题.“泛数据”研究“泛”在两个方面:X-data:XMLdata(XMLDatabases),streamingdata(StreamingDatabases),…X-computing:gridcomputing(GridDatabases),sensornetwork(Sensordatabases),P2Pcomputing(P2Pdatabases),ubiquitous/pervasivecomputing(Ubiquitous/PervasiveDatabases),…目前,“泛数据”研究的根本问题是它能否产生与关系模型和事务处理技术比肩的成果.“泛数据”深层次的问题何在?“泛数据”对现有DBMS体系结构变革的需要在哪里?这一切需要我们深思熟虑,是研究数据库所不能回避的.本文基于这一想法,结合国际相关会议的情况,讨论目前数据库研究领域中最热门的几个研究方向的发展现状、面临的问题和未来趋势.希望能给数据库研究者尤其是正在进入数据库研究领域的人员一些启发.本文讨论的问题只是数据库研究领域中的一部分,观点也可能存在偏颇之处,但我们相信分析和预测数据库发展动态的工作,对促进中国数据库技术的研究和应用水平的提高具有重要的意义.2国际数据库研究界动态每隔几年,国际上一些资深的数据库专家就会聚集一堂,探讨数据库的研究现状、存在的问题和未来需要关注的新的技术焦点,其中包括:1989年在LagunaBeach,Calif.[1],1990年和1995年在PaloAlto,Calif.[2,3],1824JournalofSoftware软件学报2004,15(12)“Lagunita”,1996年在Cambridge,Mass.[4]和1998年在Asilomar,Calif.[5]的研讨会,2003年的聚会在Lowell,Mass.[6]举行,共有25位资深数据库学者参加.他们来自不同国家和地区,有着不同的研究兴趣,学者们就数据库研究的现状和将来的走向展开了深入的讨论,提出了一些重要的观点.与会的学者集中讨论了信息存储、组织、管理和访问等问题.这些问题受新型应用、技术趋势、相关领域的协同工作和领域本身的技术变革所驱动.信息的本质和来源在不断变化,每个人都意识到Internet,Web,自然科学和电子商务是信息和信息处理的巨大源泉.同时,另一个巨大的信息源即将到来,即廉价的微型传感器技术使得大部分的物体可以实时上报它们的位置和状态.这类信息能支持对移动对象的状态和位置的监视等应用.伴随新的制约与机会,传感信息的处理将会引发许多新环境下的极有趣味的数据库问题.在应用领域,Internet是目前主要的驱动力,特别是在支持“跨企业”的应用上.在历史上,应用都是企业内部的,可以在一个行政领域内进行完善的指定和优化.但是现在,大部分企业感兴趣的是如何与供应商和客户进行更密切的交流,以便提供更好的客户支持.这类应用从根本上说是跨企业的,需要安全和信息集成的有力工具.由此产生的新问题需要数据库研究人员去解决.越来越重要的另一个应用领域是自然科学,特别是物理科学、生物科学、保健科学和工程领域,这些领域产生了大量复杂的数据集,需要比现有的数据库产品更高级的数据库的支持.这些领域同样也需要信息集成机制的支持.除此之外,它们也需要对数据分析器产生的数据管道进行管理,需要对有序数据进行存储和查询(如时间序列、图像分析、网格计算和地理信息),需要世界范围内数据网格的集成.除了在信息管理领域我们遇到的这些挑战之外,在传统的DBMS相关的问题上,诸如数据模型、访问方法、查询处理代数、并发控制、恢复、查询语言和DBMS的用户界面等主题也面临着巨大的变化.这些问题过去已经得到充分研究,但是技术的发展不断改变其应用规则.比如,磁盘和RAM容量的不断变大,存储每个比特数据的花费不断降低等.虽然访问次数和带宽也在不断提高,但是它们不像前者发展得那样快,不断变化的相对比率要求我们重新评估存储管理和查询处理代数.除此之外,处理器cache的规模和层次的提高,也要求DBMS算法能够适应cache大小的变化.上述只是由于技术变迁诱导的根据新情况对原有算法重新评价的两个例子.另一个推动数据库研究发展的动力是相关技术的成熟.比如,在过去的几十年里,数据挖掘技术已经成为数据库系统重要的一个组成部分.Web搜索引擎导致了信息检索的商品化,并需要和传统的数据库查询技术集成.许多人工智能领域的研究成果也和数据库技术融合起来,这些新的技术使得我们可以处理语音、自然语言,进行不确定性推理和机器学习等.Lowell报告[6]认为,我们注意到了许多新的应用,新的技术趋势以及和影响信息管理的相关领域的协作.整体上,这些都要求一个和现今我们所拥有的完全不同的信息管理架构,并需重新考虑信息存储、组织、管理和访问等方面的问题.3主流技术发展趋势在这一部分中,我们从信息集成、数据流管理、传感器数据库技术、半结构化数据与XML数据管理、网格数据管理、DBMS自适应管理、移动数据管理、微小型数据库、数据库用户界面等方面分别讨论目前数据库领域研究方向的发展现状、面临的问题和未来趋势.3.1信息集成信息系统集成技术已经历了20多年的
本文标题:数据库技术的发展趋势……
链接地址:https://www.777doc.com/doc-2428420 .html