您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 制造加工工艺 > 数控直流恒流源的设计与制作
数控直流恒流源的设计与制作本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000mA范围内任意设定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±4mA,因而可实际应用于需要高稳定度小功率直流恒流源的领域。1系统原理及理论分析1.1单片机最小系统组成单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。主要包括AT89S52单片机、模数转换芯片ADC0809、12位数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件。1.2系统性能本系统的性能指标主要由两大关系所决定,设定值与A/D采样显示值(系统内部测量值)的关系。内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。1.3恒流原理数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。从理论上来说,通过控制AD7543的输出等级,可以达到1mA的输出精度。但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管值下降,从而导致电流不能维持恒定。为了克服大电流工作时电流的波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流的波动,此反馈回路采用数字形式反馈,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。经测试表明,采用常用的大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。电路反馈原理如下图所示。2总体方案论证与比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。本方案电路复杂,灵活性不高,效率低,不利于系统的扩展,对信号处理比较困难。方案二:采用AT89S52单片机作为整机的控制单元,通过改变AD7543的输入数字量来改变输出电压值,从而使输出功率管的基极电压发生变化,间接地改变输出电流的大小。为了能够使系统具备检测实际输出电流值的大小,可以将电流转换成电压,并经过ADC0809进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。此系统比较灵活,采用软件方法来解决数据的预置以及电流的步进控制,使系统硬件更加简洁,各类功能易于实现,能很好地满足题目的要求。本方案的基本原理如图2所示。3模块电路设计与比较3.1恒流源方案选择方案一:采用恒流二极管或者恒流三极管,精度比较高,但这种电路能实现的恒流范围很小,只能达到十几毫安,不能达到题目的要求。方案二:采用四端可调恒流源,这种器件靠改变外围电阻元件参数,从而使电流达到可调的目的,这种器件能够达到1~2000毫安的输出电流。改变输出电流,通常有两种方法:一是通过手动调节来改变输出电流,这种方法不能满足题目的数控调节要求;二是通过数字电位器来改变需要的电阻参数,虽然可以达到数控的目的,但数字电位器的每一级步进电阻比较大,所以很难调节输出电流。方案三:压控恒流源,通过改变恒流源的外围电压,利用电压的大小来控制输出电流的大小。电压控制电路采用数控的方式,利用单片机送出数字量,经过D/A转换转变成模拟信号,再送到大功率三极管进行放大。单片机系统实时对输出电流进行监控,采用数字方式作为反馈调整环节,由程序控制调节功率管的输出电流恒定。当改变负载大小时,基本上不影响电流的输出,采用这样一个闭路环节使得系统一直在设定值维持电流恒定。该方案通过软件方法实现输出电流稳定,易于功能的实现,便于操作,故选择此方案。电路原理图如图3所示。3.2反馈闭环方案选择方案一:采样电阻上的电压,可知输出电流与采样电阻存在近似线性关系,因此可以从检测电阻上电压的大小来直接增减反馈深度。方案二:从采样电阻上得到一个反馈电压,由于采样电阻阻值比较小,在该电阻上的压降相应也小,为了提高系统控制的灵敏度,采用一级运算放大器对采样电压进行放大,再送到ADC0809进行A/D转换。数据由单片机系统进行相应处理,为了达到1mA步进,选用12位串行D/A转换器件AD7543可以满足题目要求,而且该芯片是采用串行数据传送方式,硬件电路简单。同时反馈系统控制灵活,易于达到1mA的步进要求。3.3控制单元方案选择由于要实现人机对话,至少要有10个数字按键和两个步进按键,考虑到还要实现其它的功能键,选用16按键的键盘来完成整个系统控制。显示部分采用8位LED数码管,而且价格便宜,易于实现。考虑到单片机的I/O端口有限,为了充分优化系统,采用外部扩展一片8155来实现键盘接口与显示功能。电路原理如图4所示。图3压控恒流源电路原理图4键盘及显示电路3.4电源方案选择方案一:用开关稳压电源给整机供电,此方案能够完成本作品电流源的供电,但开关电源比较复杂,而且体积也比较大,制作不便,因而此方案难以实现。方案二:单片机控制系统以及外围芯片供电采用78系列三端稳压器件,通过全波整流,然后进行滤波稳压。电流源部分由于要给外围测试电路提供比较大的功率,因此必须采用大功率器件。考虑到该电流源输出电压在10V以内,最大输出电流不大于2000mA,由公式P=U*I可以粗略估算电流源的功耗为20W。同时考虑到恒流源功率管部分的功耗,需要预留功率余量,因此供电电源要求能输出30W以上。为了尽量减少输出电流的纹波,要求供电源要稳定,因此采用隔离电源,选用由LM338构成的高精度大电流稳压电源。此方案输出电流精度高,能满足题目要求,而且简单实用,易于自制,故选用方案二。稳压电源原理如图5所示。3.5过压报警功能设计为了使本数控直流电流源进一步智能化,考虑到要求输出电压不大于10V,因此系统测试部分设计了一个过压报警电路,用于对电压的实时监测,一旦有过压现象,控制器响应后会发出报警控制信号。电路原理参见图3。4软件设计根据实际的硬件电路,为了有效地减小纹波电流,用软件方法实现去峰值数值滤波,以减小环境参数对输出控制量的影响。软件设计主程序流程图和闭环比较子程序流程图;电流设置子程序流程图;键盘中断子程序流程图;显示中断子程序流程图。分别如下图所示。根据本系统的实际要求软件设计可分为以下几个功能模块:4.1主程序模块MAIN:流程图如图6所示。主程序负责与各子程序模块的接口和检查键盘功能号。4.2闭环比较子程序模块BIHUAN:流程图如图7所示。通过调用闭环比较子程序得出实际值与设定值的差值,如果是实际值大于设定值则将原来的D/A的入口数值减去这个差值再送去D/A转换,如果是实际值小于设定值则把原来的D/A的入口数值加上这个差值再送去转换。如果输出值与设定值仍然不一致,再将差值和设定值相加送D/A转换,以逐步逼近的形式使实际值和设定值相一致后通过LED把稳定的实际值显示出来。而逐步逼近过程中的实际值不送显示因此减少了实际显示值的不稳定。这也是结构化程序的要点(合理设置程序的顺序结构)。4.3电流设置子程序模块SETUP:流程图如图8所示。通过键盘设置电流的大小,因为本系统最大输出电流是2000mA,所以该子程序兼有电流设置合法性,也就是说设置电流不能大于2000mA。4.4键盘中断子程序模块KEYSCAN:流程图如图9所示。本系统采用外部中断1来实现实时扫描,使程序及时响应按键请求而无需顾虑其它程序模块运行情况。4.5显示中断子程序模块LED:流程图如图10所示。本系统采用定时中断0来实现逐位动态显示,每位显示间隔固定为2ms,使LED输示非常稳定,无法考虑定时刷新显示,使得该显示子程序简单灵活,适用性广。5数据测试及分析数据测试是反映系统性能的重要指标。因此对本系统进行了全面的测试,分别为输出电流测试、步进电流测试、工作时间测试、负载阻值变化测试、纹波电流测试。本系统测试采用的仪表如下:当测试系统电流分别0~200mA和200mA~2000mA时,分别采用数字表DT9801的200mA档和10A档。测试电压采用数字表XB-9208B的2V档和20V档。测试纹波电流采用低频毫伏表DA—16D来测试纹波电压,但当测量值与对应量程相差较大时,会有一定的误差。图2系统原理框图比较以上两种方案的优缺点,方案二简洁、灵活、可扩展性好,能达到题目的设计要求,因此采用方案二来实现。图5稳压电源原理图8电流设置子程序模块
本文标题:数控直流恒流源的设计与制作
链接地址:https://www.777doc.com/doc-2430274 .html