您好,欢迎访问三七文档
大连科技学院学院毕业设计(论文)调研报告学生姓名黄旭专业班级信工11-1班指导教师石桂名职称讲师所在单位电气工程系信息工程教研室教研室主任徐曌完成日期2015年4月5日大连科技学院2015届本科生毕业设计(论文)调研报告1调研报告1课题来源及意义数学形态学(MathematicalMorphology)诞生于1964年,是由法国巴黎矿业学院博士生赛拉(J.Serra)和导师马瑟荣,在从事铁矿核的定量岩石学分析及预测其开采价值的研究中提出“击中/击不中变换”,并在理论层面上第一次引入了形态学的表达式,建立了颗粒分析方法。他们的工作奠定了这门学科的理论基础,如击中/击不中变换、开闭运算、布尔模型及纹理分析器的原型等。数学形态学的基本思想是用具有一定形态的结构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。数学形态学是由一组形态学的代数运算子组成的,它的基本运算有4个:膨胀(或扩张)、腐蚀(或侵蚀)、开启和闭合,它们在二值图像和灰度图像中各有特点。基于这些基本运算还可推导和组合成各种数学形态学实用算法,用它们可以进行图像形状和结构的分析及处理,包括图像分割、特征抽取、边界检测、图像滤波、图像增强和恢复等。数学形态学方法利用一个称作结构元素的“探针”收集图像的信息,当探针在图像中不断移动时,便可考察图像各个部分之间的相互关系,从而了解图像的结构特征。数学形态学基于探测的思想,与人的FOA(FocusOfAttention)的视觉特点有类似之处。作为探针的结构元素,可直接携带知识(形态、大小、甚至加入灰度和色度信息)来探测、研究图像的结构特点。数学形态学的基本思想及方法适用于与图像处理有关的各个方面,如基于击中/击不中变换的目标识别,基于流域概念的图像分割,基于腐蚀和开运算的骨架抽取及图像编码压缩,基于测地距离的图像重建,基于形态学滤波器的颗粒分析等。迄今为止,还没有一种方法能像数学形态学那样既有坚实的理论基础,简洁、朴素、统一的基本思想,又有如此广泛的实用价值。有人称数学形态学在理论上是严谨的,在基本观念上却是简单和优美的。2数学形态学的定义和分类数学形态学是以形态结构元素为基础对图像进行分析的数学工具。它的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。数学形态学的应用可以简化图像数据,保持它们基本的形状特征,并除去不相干的结构。数学形态学的基本运算有4个:膨胀、腐蚀、开启和闭合。它们在二值图像中和灰度图像中各有特点。基于这些基本运算还可以推导和组合成各种数学形态学实用算法。2.1二值形态学大连科技学院学院2015届本科生毕业设计(论文)调研报告2数学形态学中二值图像的形态变换是一种针对集合的处理过程。其形态算子的实质是表达物体或形状的集合与结构元素间的相互作用,结构元素的形状就决定了这种运算所提取的信号的形状信息。形态学图像处理是在图像中移动一个结构元素,然后将结构元素与下面的二值图像进行交、并等集合运算。基本的形态运算是腐蚀和膨胀。在形态学中,结构元素是最重要最基本的概念。结构元素在形态变换中的作用相当于信号处理中的“滤波窗口”。用B(x)代表结构元素,对工作空间E中的每一点x腐蚀和膨胀的定义为:{:()}{:()}XEBxBxEYEByByE用B(x)对E进行腐蚀的结果就是把结构元素B平移后使B包含于E的所有点构成的集合。用B(x)对E进行膨胀的结果就是把结构元素B平移后使B与E的交集非空的点构成的集合。先腐蚀后膨胀的过程称为开运算。它具有消除细小物体,在纤细处分离物体和平滑较大物体边界的作用。先膨胀后腐蚀的过程称为闭运算。它具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。可见,二值形态膨胀与腐蚀可转化为集合的逻辑运算,算法简单,适于并行处理,且易于硬件实现,适于对二值图像进行图像分割、细化、抽取骨架、边缘提取、形状分析。但是,在不同的应用场合,结构元素的选择及其相应的处理算法是不一样的,对不同的目标图像需设计不同的结构元素和不同的处理算法。结构元素的大小、形状选择合适与否,将直接影响图像的形态运算结果。因此,很多学者结合自己的应用实际,提出了一系列的改进算法。如梁勇提出的用多方位形态学结构元素进行边缘检测算法既具有较好的边缘定位能力,又具有很好的噪声平滑能力。许超提出的以最短线段结构元素构造准圆结构元素或序列结构元素生成准圆结构元素相结合的设计方法,用于骨架的提取,可大大减少形态运算的计算量,并可同时满足尺度、平移及旋转相容性。2.2灰度数学形态学二值数学形态学可方便地推广到灰度图像空间。只是灰度数学形态学的运算对象不是集合,而是图像函数。以下设f(x,y)是输入图像,b(x,y)是结构元素。对灰度图像的膨胀(或腐蚀)操作有两类效果:大连科技学院学院2015届本科生毕业设计(论文)调研报告3()(,)max{(,)(,)(,),(,)}()(,)min{(,)(,)(,),(,)}fbfbfbstfsxtybxysxtyDxyDfbstfsxtybxysxtyDxyD(1)如果结构元素的值都为正的,则输出图像会比输入图像亮(或暗);(2)根据输入图像中暗(或亮)细节的灰度值以及它们的形状相对于结构元素的关系,它们在运算中或被消减或被除掉。灰度数学形态学中开启和闭合运算的定义与在二值数学形态学中的定义一致。用b对f进行开启和闭合运算的定义为:()()fbfbbfbfbb2.3模糊数学形态学将模糊集合理论用于数学形态学就形成了模糊形态学。模糊算子的定义不同,相应的模糊形态运算的定义也不相同。在此,选用Shinba的定义方法。模糊性由结构元素对原图像的适应程度来确定。用有界支撑的模糊结构元素对模糊图像的腐蚀和膨胀运算按它们的隶属函数定义为:()min[min[1,1()()]]min[1,min[1()()]]()max[max[0,()()1]]max[1,max[()()1]]ababababababxxyyxyyxxyyxyy其中,x,y∈Z2代表空间坐标,ua,ub分别代表图像和结构元素的隶属函数。从(7),(8)式的结果可知,经模糊形态腐蚀膨胀运算后的隶属函数均落在[0,1]的区间内。模糊形态学是传统数学形态学从二值逻辑向模糊逻辑的推广,与传统数学形态学有相似的计算结果和相似的代数特性。模糊形态学重点研究n维空间目标物体的形状特征和形态变换,主要应用于图像处理领域,如模糊增强、模糊边缘检测、模糊分割等。3数学形态学在图像处理中的主要应用近年来,数学形态学在图像处理方面得到了日益广泛的应用。下面主要就数学形态学在边缘检测、图像分割、图像细化以及噪声滤除等方面的应用做简要介绍。(1)边缘检测边缘检测是大多数图像处理必不可少的一步,提供了物体形状的重要信息。对于二大连科技学院学院2015届本科生毕业设计(论文)调研报告4值图像,边缘检测是求一个集合A的边界,记为B(A):()()AAAB对于灰度图像,边缘检测是求一幅图像的形态学梯度,记为g:数学形态学运算用于边缘检测,存在着结构元素单一的问题。它对与结构元素同方向的边缘敏感,而与其不同方向的边缘(或噪声)会被平滑掉,即边缘的方向可以由结构元素的形状确定。但如果采用对称的结构元素,又会减弱对图像边缘的方向敏感性。所以在边缘检测中,可以考虑用多方位的形态结构元素,运用不同的结构元素的逻辑组合检测出不同方向的边缘。梁勇等人构造了8个方向的多方位形态学结构元素,应用基本形态运算,得到8个方向的边缘检测结果,再把这些结果进行归一化运算、加权求和,得到最终的图像边缘。该算法在保持图像细节特征和平滑边缘等方面,取得了较好的效果。(2)图像分割基于数学形态学的图像分割算法是利用数学形态学变换,把复杂目标X分割成一系列互不相交的简单子集X1,X2,…,XN,即:对目标X的分割过程可按下面的方法完成:首先求出X的最大内接“圆”X1,然后将X1从X中减去,再求X-X1的最大内接“圆”X2,…,依此类推,直到最后得到的集合为空集为止。下面以二值图像为例,介绍用数学形态学方法求解子集X1,X2,…,XN的过程。设B为结构元素,B可以是圆、三角形、正方形等简单的几何基元,那么“简单”形状集合Xi可以用下面的公式来定义:式中ni为一整数,用上式定义Xi分割目标,有时会产生分割过程不唯一的现象。为此可采用下面公式来定义简单集合Xi:其中Li为一个点或一条线,当Li为点时,则与(12)式定义等价。(13)式定义的简单形状Xi可由niB沿线Li移动而产生。即将“产生器”niB的中心沿“脊骨”Li移动产生。如果niB为圆,则得到的Xi称Blum带。它具有一些特殊的性质,如Xi的边界是光滑的,Xi的最大圆与其边界相切,Xi的脊骨与产生器都是唯一的等等。有了简单形状集合Xi的定义,则目标X可按下面方法分割。首先按式(14)求出X的最大内切结构元素Xi:数学形态学用于图像分割的缺点是对边界噪声敏感。为了改善这一问题,刘志敏等人提出了基于图像最大内切圆的数学形态学形状描述图像分割算法和基于目标最小闭包结构元素的数学形态学形状描述图像分割算法,并使用该算法对二值图像进行了分割,取得了较好的效果。邓世伟等人提出一种基于数学形态学的深度图像分割算法。作者首先利用形态学算子获得分别含有阶跃边缘与屋脊边缘的凸脊和凹谷图像,然后利用控制区域生长过程得到最终的分割结果。与传统方法相比,该方法速度快,抗噪性能好。(3)形态骨架提取大连科技学院学院2015届本科生毕业设计(论文)调研报告5形态骨架描述了物体的形状和方向信息。它具有平移不变性、逆扩张性和等幂性等性质,是一种有效的形状描述方法。二值图像A的形态骨架可以通过选定合适的结构元素B,对A进行连续腐蚀和开启运算来求取,设S(A)代表A的骨架。蒋刚毅等人运用数学形态学方法,对交通标志的内核形状提取形态骨架函数,将其作为用于模式匹配的形状特征。A的形态骨架函数SKF(A)表示为:SKF(X)中值较大的点对应大的n,并代表了形态骨架的主要成分,即表达了形状的主体结构;而SKF(X)中值较小的点对应小的n,是形态骨架的细节成分,与形状的边缘信息相联系。形态骨架函数完整简洁地表达了形态骨架的所有信息,因此,根据形态骨架函数的模式匹配能够实现对不同形状物体的识别。算法具有位移不变性,因而使识别更具稳健性。(4)噪声滤除对图像中的噪声进行滤除是图像预处理中不可缺少的操作。将开启和闭合运算结合起来可构成形态学噪声滤除器。对于二值图像,噪声表现为目标周围的噪声块和目标内部的噪声孔。用结构元素B对集合A进行开启操作,就可以将目标周围的噪声块消除掉;用B对A进行闭合操作,则可以将目标内部的噪声孔消除掉。该方法中,对结构元素的选取相当重要,它应当比所有的噪声孔和噪声块都要大。对于灰度图像,滤除噪声就是进行形态学平滑。实际中常用开启运算消除与结构元素相比尺寸较小的亮细节,而保持图像整体灰度值和大的亮区域基本不变;用闭合运算消除与结构元素相比尺寸较小的暗细节,而保持图像整体灰度值和大的暗区域基本不变。将这两种操作综合起来可达到滤除亮区和暗区中各类噪声的效果。同样的,结构元素的选取也是个重要问题。4选取结构元素的方法分析表明,各种数学形态学算法的应用可分解为形态学运算和结构元素选择两个基本问题,形态学运算的规则已由定义确定,于是形态学算法的性能就取决于结构元素的选择,亦即结构元素决定着形态学算法的目的和性能。因此如何自适应地优化确定结构元素,就成为形态学领域中人们长期关注的研究热点和技术难点。目前较多采用多个结构元素对图像进行处理的方法。(1)多结构元素运算在许多形态学应用中,往往只采用一个结构元素,这通常不能产生满意的结果。在模式识别中,如果要提取某个特定的模式,只采用一个结构元素,那么,只有与结构元大连科技学院学院2015届本科生毕业设计(论文)调研报告6素形状、大小完全相同的模式才能被提取,而与此结构
本文标题:形态学调研报告
链接地址:https://www.777doc.com/doc-2433038 .html