您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 工程地质学考试复习题
填空与选择题岩体结构结构面和结构体的排列与组合形成。包括结构面和结构体两个要素。结构面指发育于岩体中,具有一定方向和延伸性,有一定厚度的各种地质界面,如断层、节理、层理及不整合面等.由于这种界面中断了岩体的连续性,故又称不连续面。结构面的成因分类:原生结构面、构造结构面、次生结构面岩体结构类型划分为了概括地反映岩体结构面和结构体的成因、特征及其排列组合关系.将岩体结构划分为4大类和8个亚类如下表所示:整体块状结构Ⅰ整体结构(Ⅰ1)块状结构(Ⅰ2)层状结构Ⅱ层状结构(Ⅱ1)薄层状结构碎裂结构Ⅲ层状碎裂结构(Ⅲ2)碎裂结构(Ⅲ3)散体结构Ⅳ工程地质条件工程地质条件是指工程建筑物所在地区地质环境各项因素的综合。这些因素包括:(1)地层的岩性:是最基本的工程地质因素,包括它们的成因、时代、岩性相关书籍、产状、成岩作用特点、变质程度、风化特征、软弱夹层和接触带以及物理力学性质等。(2)地质构造:也是工程地质工作研究的基本对象,包括褶皱、断层、节理构造的分布和特征、地质构造,特别是形成时代新、规模大的优势断裂,对地震等灾害具有控制作用,因而对建筑物的安全稳定、沉降变形等具有重要意义。(3)水文地质条件:是重要的工程地质因素,包括地下水的成因、埋藏、分布、动态和化学成分等。(4)地表地质作用:是现代地表地质作用的反映,与建筑区地形、气候、岩性、构造、地下水和地表水作用密切相关,主要包括滑坡、崩塌、岩溶、泥石流、风沙移动、河流冲刷与沉积等,对评价建筑物的稳定性和预测工程地质条件的变化意义重大。(5)地形地貌:地形是指地表高低起伏状况、山坡陡缓程度与沟谷宽窄及形态特征等;地貌则说明地形形成的原因、过程和时代。平原区、丘陵区和山岳地区的地形起伏、土层厚薄和基岩出露情况、地下水埋藏特征和地表地质作用现象都具有不同的特征,这些因素都直接影响到建筑场地和路线的选择。(6)地下水:包括地下水位,地下水类型,地下水补给类型,地下水位随季节的变化情况。(7)建筑材料:结合当地具体情况,选择适当的材料作为建筑材料,因地制宜,合理利用,降低成本。参考资料《工程地质》主编:邵燕合肥工业大学出版社工程地质条件是客观存在的地质因素,只有其中的稳定因素或工程建设产生的不稳定因素对工程建设运行构成或可能构成有害影响时才成为工程地质问题工程地质学的基本任务工程地质学的研究任务是查明建设地区或建筑场地的工程地质条件,分析、预测和评价可能存在和发生的工程地质问题及其对建筑物和地质环境的影响和危害,提出防治不良地质现象的措施,为保证工程建设的合理规划以及建筑物的正确设计、顺利施工和正常使用,提供可靠的地质科学依据。工程地质问题释文:工程地质问题是指与人类工程活动有关的地质问题。它影响建筑物修建的技术可能性、经济合理性和安全可靠性。如建筑物所处地质环境的区域构造稳定问题、地基岩体稳定问题、地下硐室围岩稳定问题和边坡岩体稳定问题、水库渗漏问题、淤积问题、浸没问题、边岸再造及坝下游冲刷问题,以及与上述问题相联系的建筑场地的规划、设计和施工条件等方面的问题。工程地质工作的基本任务在于对人类工程活动可能遇到或引起的各种工程地质问题作出预测和确切评价,从地质方面保证工程建设的技术可行性、经济合理性和安全可靠性。工程地质问题是指已有的工程地质条件在工程建筑和运行期间会产生一些新的变化和发展,构成威胁影响工程建筑安全的地质问题称为工程地质问题。由于工程地质条件复杂多变,不同类型的工程对工程地质条件的要求又不尽相同,所以工程地质问题是多种多样的。就土木工程而言,主要的工程地质问题包括:(1)地基稳定性问题:是工业与民用建筑工程常遇到的主要工程地质问题,它包括强度和变形两个方面。此外岩溶、土洞等不良地质作用和现象都会影响地基稳定。铁路、公路等工程建筑则会遇到路基稳定性问题。(2)斜坡稳定性问题:自然界的天然斜坡是经受长期地表地质作用达到相对协调平衡的产物,人类工程活动尤其是道路工程需开挖和填筑人工边坡(路堑、路堤、堤坝、基坑等),斜坡稳定对防止地质灾害发生及保证地基稳定十分重要。斜坡地层岩性、地质构造特征是影响其稳定性的物质基础,风化作用、地应力、地震、地表水、和地下水等对斜坡软弱结构面作用往往破环斜坡稳定,而地形地貌和气候条件是影响其稳定的重要因素。(3)洞室围岩稳定性问题:地下洞室被包围于岩土体介质(围岩)中,在洞室开挖和建设过程中破坏了地下岩体原始平衡条件,便会出现一系列不稳定现象,常遇到围岩塌方、地下水涌水等。一般在工程建设规划和选址时要进行区域稳定性评价,研究地质体在地质历史中受力状况和变形过程,做好山体稳定性评价,研究岩体结构特性,预测岩体变形破坏规律,进行岩体稳定性评价以及考虑建筑物和岩体结构的相互作用。这些都是防止工程失误和事故,保证洞室围岩稳定所必需的工作。(4)区域稳定性问题:地震、震陷和液化以及活断层对工程稳定性的影响,自1976年唐山地震后越来越引起土木工程界的注意。对于大型水电工程、地下工程以及建筑群密布的城市地区,区域稳定性问题应该是需要首先论证的问题。工程地质学的研究方法工程地质学的研究方法主要有以下四种:1、地质分析法:以地质学和自然历史的观点分析研究工程地质条件的形成和发展;2、力学分析法:在研究工程地质问题形成机理的基础上,采用力学手段建立模型进行计算和预测;3、工程类比法:根据条件类似地区已有资料对研究区的问题进行分析;4、实验法:通过室内或到野外现场试验,取得所需要的岩土的物理力学参数。由于工程地质学的研究对象是复杂的地质体,因此其研究方法应是地质分析法与力学分析法、工程类比法与实验法等的密切结合,即通常所说的定性分析与定量分析相结合的综合研究方法。简答与问答题活断层的鉴别标志断层的活动性与否要通过一些标志加以鉴别。鉴别有直接测定活动物质年龄的方法,也可以从有关的地质、地球物理等现象间接判断。间接鉴别标志有如下几个方面:一、地质、地貌、水文地质标志二、历史地震及历史期地震错段标志三、微地震测量及地形变检测标志四、地球物理标志1、地质方面最新沉积物被错断只要是见到第四系中、晚期的沉积物被错断,均视断层为活断层。如位于汾渭地堑中段的平遥活断层,错断晚更新世中晚期的黄土,以及早中期更新世地层,断距40—50m。断层破碎带构造形迹活动断层因其形成时间较晚,一般表现为构造带物质欠固结欠胶结状态,较为松散。另外,表现出脉体变形被切断,构造岩片理化,透镜化,断面新鲜无风化,第四系物质牵引弯折等。断层矿物的显微变形出现显微组构(如不等颗粒拉长,光轴微定向等)伴有地震现象的活断层,地表出现断层陡坎和地裂缝如,日本丹那断层带,地震产生很多地裂缝,呈雁形排列2、地貌方面•不同地貌单元突然相接,或两边沉积物厚度显著差别例如,隆起山区与断陷盆地突然相接。一次错动量大的活断层,沿线分布断层三角面、断层崖、陡坎、垭口、“V型谷”等•地貌单元的分解和异常例如,河流阶地、山脊、水系、娄平面、坡洪积扇等地貌单元由于活断层作用,使其产生错断、分解活断层作用使正常发育的地貌系统出现异常形态或特殊地貌景观。如断层带一侧,河流的同步肘状拐弯、宽窄变异,断层下降盘一侧线状排列的洪积群、泥石流、滑坡、串珠状洼地等。水系:对于走滑型断层(1)一系列的水系河谷向同一方向同步移错(2)主干断裂控制主干河道的走向2、地貌方面山脊、山谷、阶地和洪积扇错开:走滑型活断层近期断块的差异升降运动,可使同一级平面分离解体,高程相差较大不良地质现象呈线形密集分布宝成铁路:长609公里,灾害112处3、水文地质方面由于断层带构造物质松散,容易形成强导水带,因而活断层带一线分布泉水、温泉,出现植被发育现象。也由于活断层为深大断裂,深循环水将导致水的化学异常。例:宝鸡-潼关有近30处温泉4、地物错断/历史资料我国有长达3000多年的历史地震记载资料,尤其是较近的历史记载,可以帮助判别活断层的存在,可能时据以判断活断层的错距,断裂长度等。对古代建筑物破坏、错断、掩埋等情况调查,可以帮助判断活断层当时的错距等情况。5、微震及地形变测量自70年代以来,我国地震部门在一些重要地区设置了密集的地震台网,监测微震震中位置用以判别活断层,尤其在一些大型水、著名的活断层地区布置监测台站,取得了一系列监测资料。它是研究现代地震活断层的最直接有效的方法,但其费时、代价高,不能作为研究活断层的主要工具。采用精密水准测量和三角测量在可能活动断层两侧进行地形变测量,可以有效地获得断层活动性的有关证据。6、地球化学及地球物理标志断层的现代活动,必然导致断层带内产生物理、化学变化,其中如断层气、放射性异常;重力、磁力、地温等物理异常。通过测量分析,可以间接作为活断层的佐证。活断层区的建筑原则建筑物场址一般应避开活动断裂带线路工程必须跨越活断层时,尽量使其大角度相交,并尽量避开主断层必须在活断层地区兴建的建筑物,应尽可能地选择相对稳定地块即“安全岛”,尽量将重大建筑物布置在断层的下盘。在活断层区兴建工程,应采用适当的抗震结构和建筑型式岩块在压缩条件下产生的几个阶段,每个变形阶段的特征岩块在连续单轴压缩条件下典型的应力-应变曲线如图。可以划分为几个阶段,每一阶段的变形特征不同,变形发生的机理也不相同。(1)空隙压密阶段(OA)(2)弹性变形阶段(AB)B点:弹性极限(2)微裂隙稳定发展阶段(BC)C点:屈服强度(3)非稳定发展阶段(CD)D点:峰值强度(4)破坏阶段(DE(1)空隙裂隙压密阶段(OA段):即试件中原有张开性结构面或微裂隙逐渐闭合,岩石被压密,形成早期的非线性变形。σ~ε曲线呈上凹型,曲线斜率随应力增加而逐渐增大,表明微裂隙的闭合开始较快,随后逐渐减慢。本阶段变形对裂隙化岩石来说较明显,而对坚硬少裂隙的岩石则不明显,甚至不显现。(2)弹性变形至微破裂稳定发展阶段(AC段):该阶段的σ-εL曲线呈近似直线关系,而σ-εv曲线开始(AB段)为直线关系,随σ增加逐渐变为曲线关系。据其变形机理又可细分弹性变形阶段(AB段)和微破裂稳定发展阶段(BC段)。弹性变形阶段不仅变形随应力成比例增加,而且在很大程度上表现为可恢复的弹性变形,B点的应力可称为弹性极限。微破裂稳定发展阶段的变形主要表现为塑性变形,试件内开始出现新的微破裂,并随应力增加而逐渐发展,当荷载保持不变时,微破裂也停止发展。由于微破裂的出现,试件体积压缩速率减缓,σ-εv曲线偏离直线向纵轴方向弯曲。这一阶段的上界应力(C点应力)称为屈服极限。(3)非稳定破裂发展阶段(或称累进性破裂阶段)(CD段):进入本阶段后,微破裂的发展出现了质的变化。由于破裂过程中所造成的应力集中效应显著,即使外荷载保持不变,破裂仍会不断发展,并在某些薄弱部位首先破坏,应力重新分布,其结果又引起次薄弱部位的破坏。依次进行下去直至试件完全破坏。试件由体积压缩转为扩容。轴向应变和体积应变速率迅速增大。试件承载能力达到最大,本阶段的上界应力称为峰值强度或单轴抗压强度。(4)破坏后阶段(D点以后段):岩块承载力达到峰值后,其内部结构完全破坏,但试件仍基本保持整体状。到本阶段,裂隙快速发展、交叉且相互联合形成宏观断裂面。此后,岩块变形主要表现为沿宏观断裂面的块体滑移,试件承载力随变形增大迅速下降,但并不降到零,说明破裂的岩石仍有一定的承载能力。斜坡中的应力分布特征天然岩体中应力分布:自重应力、构造应力、热应力、地下水应力等。重力场条件下、水平应力为主的构造应力场条件下未形成斜坡前最大,最小主应力、及最大剪应力分布状况。斜坡形成过程中,由于临空面的产生使坡面附近岩土体产生卸荷回弹,引起应力重分布、应力分异、应力集中等效应。尚未发生明显变形或破坏之前应力特征:1.斜坡面附近的最大主应力迹线明显偏转,愈接近坡面,愈与之平行,最小主应力与之近乎正交,向坡体内逐渐恢复初始状态;2.由于应力分异,在坡面附近产生应力集中带,坡脚附近形成最大剪应力增高带,坡肩附近形成张力带,容易拉裂;3.由于主应力偏转,导致坡体内最大剪应力迹线也发生变化,由直线变为圆弧线;4.坡面处于二向应力状态。斜坡变形破坏的类型一、变形的三种形式1、拉裂
本文标题:工程地质学考试复习题
链接地址:https://www.777doc.com/doc-2444120 .html