您好,欢迎访问三七文档
抗菌药物的作用机制1抗菌药物的作用机制主要是通过干扰病原体的生化代谢过程,影响其结构和功能,使其失去正常生长繁殖的能力而达到抑制或杀灭病原体的作用。一、抑制细菌细胞壁的合成细菌细胞壁位于细胞浆膜之外,是人体细胞所不具有的。它是维持细菌细胞外形完整的坚韧结构,它能适应多样的环境变化,并能与宿主相互作用。细胞壁的主要成分为肽聚糖(peptidoglycan),又称粘肽,它构成网状巨大分子包围着整个细菌。革兰阳性菌细胞壁坚厚,肽聚糖含量大约50%~80%,菌体内含有多种氨基酸、核苷酸、蛋白质、维生素、糖、无机离子及其它代谢物,故菌体内渗透压高。革兰阴性菌细胞壁比较薄,肽聚糖仅占1%~10%,类脂质较多,占60%以上,且胞浆内没有大量的营养物质与代谢物,故菌体内渗透压低。革兰阴性菌细胞壁与阳性菌不同,在肽聚糖层外具有脂多糖,外膜及脂蛋白等特殊成分。外膜在肽聚糖层的外侧,由磷脂、脂多糖及一组特异蛋白组成,它是阴性菌对外界的保护屏障。革兰阴性菌的外膜能阻止penicillin等抗生素、去污剂、胰蛋白酶与溶菌酶的进入,从而保护外膜内侧的肽聚糖。青霉素类(penicillins)、头孢菌素类(cephalosporins)、磷霉素(fosfomycin)、环丝氨酸(cycloserine)、万古霉素(vancomycin)、杆菌肽(bacitracin)等通过抑制细胞壁的合成而发挥作用。Penicillins与cephalosporins的化学结构相似,它们都属于β-内酰胺类抗生素,其作用机制之一是与青霉素结合蛋白(penicillinbindingproteins,PBPs)结合,抑制转肽作用,阻碍了肽聚糖的交叉联结,导致细菌细胞壁缺损,丧失屏障作用,使细菌细胞肿胀、变形、破裂而死亡。二、改变胞浆膜的通透性多肽类抗生素如多粘菌素E(polymyxins),含有多个阳离子极性基团和一个脂肪酸直链肽,其阳离子能与胞浆膜中的磷脂结合,使膜功能受损;抗真菌药物制霉菌素(nystatin)和两性霉素B(amphotericin)能选择性地与真菌胞浆膜中的麦角固醇结合,形成孔道,使膜通透性改变,细菌内的蛋白质、氨基酸、核苷酸等外漏,造成细菌死亡。三、抑制蛋白质的合成细菌核糖体的沉降系数为70S,可解离为50S和30S两个亚基,而人体细胞的核糖体的沉降系数为80S,可解离为60S和40S两个亚基。人体细胞的核糖体与细菌核糖体的生理、生化功能不同,因此,抗菌药物能选择性影响细菌蛋白质的合成而不影响人体细胞的功能。细菌蛋白质的合成包括起始、肽链延伸及合成终止三阶段,在胞浆内通过核糖体循环完成。抑制蛋白质合成的药物分别作用于细菌蛋白质合成的不同阶段:①起始阶段:氨基苷类(aminoglycosides)抗生素阻止30S亚基和70S亚基合成始动复合物的形成;②肽链延伸阶段:四环素类(tetracyclines)抗生素能与核糖体30S亚基结合,阻止氨基酰tRNA在30S亚基A位的结合,阻碍了肽链的形成,产生抑菌作用;③终止阶段:氨基苷类(aminoglycosides)抗生素阻止终止因子与A位结合,使合成的肽链不能从核糖体释放出来,致使核糖体循环受阻,合成不正常无功能的肽链,因而具有杀菌作用。四、影响核酸代谢喹诺酮类(quinolones)抑制DNA回旋酶(gyrase),从而抑制细菌的DNA复制和mRNA的转录;利福平(rifampicin)特异性地抑制细菌DNA依赖的RNA多聚酶,阻碍mRNA的合成;核酸类似物如抗病毒药物阿糖腺苷(vidarabine)、更昔洛韦(ganciclovir)等抑制病毒DNA合成的酶,使病毒复制受阻,发挥抗病毒作用。五、影响叶酸代谢细菌不能利用环境中的叶酸(folicacid),而必须利用对氨苯甲酸和二氢蝶啶在二氢叶酸合成酶的作用下合成二氢叶酸,再经二氢叶酸还原酶的作用形成四氢叶酸,磺胺类(sulfonamides)和甲氧苄啶(trimethoprim)可分别抑制folacin合成过程中的二氢叶酸合成酶和二氢叶酸还原酶,影响细菌体内的叶酸代谢,由于folacin缺乏,细菌体内氨基酸、核苷酸的合成受阻,导致细菌生长繁殖不能进行。抗结核药对氨基水杨酸(para-aminosalicylic)竞争二氢叶酸合成酶,抑制结核杆菌的生长繁殖。Ж-2β-内酰胺类抗生素β-内酰胺类(β-lactams)抗生素是临床上最常用的抗菌药物。它们的化学结构中均含有β-内酰胺环,最为常用的是青霉素类(penicillins)和头孢菌素类(cephalosporins),近年来还开发了一类非典型的β-内酰胺类抗生素,如碳青霉烯类(carbapenems)、头霉素类(cephamycin)、氧头孢烯类(oxacephems)及单环β-内酰胺类(monobactamicacid)。它们的共同作用机制是抑制细菌细胞壁的肽聚糖合成,共同特点是除了对革兰阳性菌、阴性菌有作用外,还对部分厌氧菌有抗菌作用,具有抗菌活性强、毒性低、适应证广及临床疗效好抗菌药物的作用机制2等优点。第一节化学结构、机制及耐药性【化学结构】青霉素类(penicillins)的主核为6-氨基青霉烷酸(subsituted6—aminopenicillanicacid,6-APA);头孢菌素类(cephalosporins)的主核是7-氨基头孢烷酸(substituted7-aminocephalosporanicacid);单环β-内酰胺类(monobactam)的主核为被取代的3氨基-4-甲基单环β-内酰胺类(substituted3-amino-4-methyl-monobactamicacid),代表药物是氨曲南(aztreonam);另外还有碳青霉烯类(carbapenem),代表药物是亚胺培南(imipenem)。β-lactams抗生素家族的核心结构,在每个化学结构中标有“B”的环是β-内酰胺环。青霉素最易被细菌的酰胺酶和β-内酰胺酶在所示位点水解失活。碳青霉烯的β-内酰胺环有一个不同的主体化学构象,使其对β-内酰胺酶稳定。【抗菌作用机制】1.抑制转肽酶活性β-lactams抗生素是通过干扰细菌细胞壁合成中的一个特殊步骤而显杀菌作用。细胞壁是由复杂的多聚物--肽聚糖(peptidoglycan)构成,肽聚糖由多糖和多肽组成,多糖包含有可变氨基葡萄糖,氮乙酰葡萄糖胺和氮乙酰胞壁酸。5个甘氨酸基的多肽和氮乙酰胞壁酸葡萄糖胺连接,肽链的末端是D-丙氨酰-D-丙氨酸。青霉素结合蛋白(PBPs)具有转肽酶功能,催化转肽反应,使末端D-丙氨酸脱落并与邻近多肽形成交叉网状连结,从而使得细胞壁结构坚韧。β-lactams抗生素与天然D-丙氨酰-D-丙氨酸的结构相类似,它们可以和PBPs活性位点通过共价键结合,转肽酶活性被抑制,从而阻止了肽聚糖的合成,导致细胞壁缺损,引起细菌细胞死亡。2.增加细菌胞壁自溶酶活性β-lactams抗生素使细菌裂解死亡最终是由于细胞壁自溶酶(cellwallautolyticenzyme)的活性,产生自溶或胞壁质水解。自溶酶的活性可能与维持细菌细胞的正常功能与分裂有关。另外有证据表明β-lactams抗生素可取消自溶酶抑制物的作用。【耐药性】细菌对β-lactams抗生素的耐药性在临床上非常普遍。现已对其耐药性进行了大量的研究,并找到一些降低耐药性的新药。其主要的耐药机制有以下几个方面:1.生成β-内酰胺酶(β-lactamase)这是最常见的耐药机制。目前已发现的β-lactamase超过100种,由金黄色葡萄球菌、嗜血杆菌和大肠杆菌产生的β-内酰胺酶,特异性高,只能水解penicillins抗生素;另一些由铜绿假单胞菌和大肠杆菌产生的β-lactamase,特异性相对较低,能水解penicillin和cephalosporin;carbapenems对青霉素和头孢菌素酶虽然稳定,却能被含金属的β-内酰胺酶水解。由于β-内酰胺酶在耐药性中的重要性,因此抑制此酶类,将克服细菌的耐药性并提高本类药物的疗效。这是β-内酰胺酶抑制剂与β-lactams抗生素组成复方成功应用于临床的理论依据,使β-内酰胺酶引起的耐药性得到部分的改善。2.药物对的PBPs的亲和力降低细菌体存在多种PBPs,它们在结构和功能上都不相同。由于PBPs的结构和功能的差异,产生所谓内源性耐药;有些原本对药物敏感的菌株由于产生与β-lactams亲和力低的新的PBPs,而获得耐药性。也就是通过不同菌株间PBP基因的同源重组,细菌可以获得对β-lactams低亲和力的PBPs。从高度耐penicillin的肺炎链球菌分离到的5个高分子量的PBPs中,有4个通过同源重组而降低了对β-内酰胺类的亲和力。耐penicillin的链球菌是因其PBPs被耐药肺炎链球菌的一个额外的高分子的PBP所置换,而这个PBP对所有的β-内酰胺类的亲和力都低。3.药物不能在作用部位达到有效浓度①孔道蛋白数量和质量的改变。细菌外膜是许多抗生素不能穿透的屏障,但β-内酰胺类和亲水的抗生素可通过蛋白质在外膜形成的孔道(如OmpF和OmpC)弥散进入。在耐药的细菌中可见孔道数量减少和孔道变小,使药物难以达到作用部位。外膜孔道的数量和大小在不同的革兰阴性菌是不同的。②主动流出加强。这是细菌固有耐药和多重耐药的重要机制之一。目前已在研究抑制该系统的抗菌新药。第二节青霉素类抗生素青霉素类(penicillins)药物是目前临床上使用的最重要的一类抗生素(antibiotics)。尽管第一个penicillin问世之后,已经研制出大量的其他种类的抗菌药物,penicillins仍然作为最主要的一类抗生素在广泛地使用着。在penicillin五核基础上改造而成的各种衍生物仍然在不断推出,而成为许多感染性疾病的首选药物。Penicillins的分类。按照penicillins的来源,可以分为天然penicillins和半合成penicillins两个大类。后者又可以按照它们的抗菌谱、对青霉素酶(penicillinase)的耐药性以及是否可抗菌药物的作用机制3以口服(耐酸)等特性,再分为下列类型:①口服耐酸青霉素,如penicillinV;②耐青霉素酶penicillins,如甲氧西林(methicillin)、苯唑西林(oxacillin)、氯唑西林(cloxacillin)、双氯西林(dicloxacillin);③广谱penicillins,如氨苄西林(ampicillin),阿莫西林(amoxicillin);④抗铜绿假单胞菌penicillins,如羧苄西林(carbenicillin)、哌拉西林(piperacillin);⑤抗革兰阴性杆菌penicillins,如美西林(mecillinam)、替莫西林(temocillin)。一、天然青霉素青霉素GPenicillinGPenicillinG(又名苄青霉素,benzylpenicillin)由青霉菌培养液中获得,性质稳定,作用强,产量高,价格低廉,目前仍是治疗敏感菌的首选药物。主要用其钠盐,其晶粉在室温下稳定,易溶于水,在水中不稳定,故临用时配成水溶液。不耐酸,不耐青霉素酶,因此不能口服,对产青霉素酶菌无效,抗菌谱窄。【抗菌作用】PenicillinG对敏感菌有强大杀菌作用,对宿主无毒。对penicillinG敏感的致病菌主要包括以下几种:①革兰阳性球菌:对溶血性链球菌,不产酶金黄色葡萄球菌,非耐药肺炎链球菌和厌氧的阳性球菌作用强;②革兰阴性球菌:脑膜炎球菌、淋球菌敏感。但近来发现较多的淋球菌对本药耐药;③革兰阳性杆菌:白喉棒状杆菌,炭疽芽胞杆菌,厌氧的破伤风杆菌、产气荚膜杆菌、肉毒杆菌、放线菌属、真杆菌属、丙酸杆菌均对penicillinG敏感;④螺旋体:梅毒螺旋体、钩端螺旋体、鼠咬热螺旋体对penicillinG高度敏感。【临床应用】1、链球菌感染:溶血性链球菌引起的咽炎、扁桃体炎、猩红热、蜂窝组织炎、化脓性关节炎、败血症等;草绿色链球菌引起的心内膜炎;肺炎链球菌引起
本文标题:抗生素的作用机理
链接地址:https://www.777doc.com/doc-2448091 .html