您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 带电粒子在电磁场中的运动
例4如图3-7所示,在空间存在水平方向的匀强磁场(图中未画出)和方向竖直向上的匀强电场(图中已画出),电场强度为E,磁感强度为B。在某点由静止释放一个带电液滴a,它运动到最低点恰与一个原来处于静止状态的带电液滴b相撞,撞后两液滴合为一体,并沿水平方向做匀速直线运动,如图所示,已知a的质量为b的2倍,a的带电量是b的4倍(设a、b间静电力可忽略)。(1)试判断a、b液滴分别带何种电荷?(2)求当a、b液滴相撞合为一体后,沿水平方向做匀速直线的速度v及磁场的方向;(3)求两液滴初始位置的高度差h。例6光从液面到空气时的临界角C为45°,如图3-16所示,液面上有一点光源S发出一束光垂直入射到水平放置于液体中且到液面的距离为d的平面镜M上,当平面镜M绕垂直过中心O的轴以角速度做逆时针匀速转动时,观察者发现水面上有一光斑掠过,则观察者们观察到的光斑的光斑在水面上掠过的最大速度为多少?例8已知物体从地球上的逃逸速度(第二宇宙速度)EERGMv/22,其中G、ME、RE分别是引力常量、地球的质量和半径。已知G=6.7×10-11N·m2/kg2,c=3.0×108m/s,求下列问题:(1)逃逸速度大于真空中光速的天体叫做黑洞,设某黑洞的质量等于太阳的质量M=2.0×1030kg,求它的可能最大半径(这个半径叫Schwarhid半径);(2)在目前天文观测范围内,物质的平均密度为10-27kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(最后结果保留两位有效数字)例题6云室处在磁感应强度为B的匀强磁场中,一静止的质量为M的原于核在云室中发生一次衰变,粒子的质量为m,电量为q,其运动轨迹在与磁场垂直的平面内,现测得粒子运动的轨道半径R,试求在衰变过程中的质量亏损。题4如图所示,a、b、c是匀强电场中的三点,这三点构成等边三角形,每边长cmL21,将一带电量Cq6102的电荷从a点移到b点,电场力JW51102.1;若将同一点电荷从a点移到c点,电场力做功JW61106,试求场强E。[例9]如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(aL)的正方形闭合线圈以初速v0垂直磁场边界滑过磁场后速度变为v(vv0)那么()A.完全进入磁场中时线圈的速度大于(v0+v)/2B.安全进入磁场中时线圈的速度等于(v0+v)/2C.完全进入磁场中时线圈的速度小于(v0+v)/2D.以上情况A、B均有可能,而C[例13](2005年上海)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=370角,下端连接阻值为R的电阻。匀强磁场的方向与导轨平面垂直。质量为0.2kg、电阻不计的导体棒放在两导轨上,棒与导轨垂直并且接触良好,它们间的动摩擦因数为0.25。(1)金属棒沿导轨由静止开始下滑时的加速度大小。(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小。(3)在上问中,若R=2Ω,金属棒中电流方向由a到b,求磁感应强度的大小与方向。(g=10m/s2,sin370=0.6,cos370=0.8)23、如图甲,空间存在一范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.让质量为m,电量为q(q0)的粒子从坐标原点O沿xOy平面以不同的初速度大小和方向入射到该磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;(2)已知一粒子的初速度大小为v(vv1),为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x轴正向的夹角)有几个?并求出对应的sinθ值;(3)如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿y轴正向发射.研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所在位置的y坐标成正比,比例系数与场强大小E无关.求该粒子运动过程中的最大速度值vm.22.如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场.带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:(1)匀强电场场强E的大小;(2)粒子从电场射出时速度v的大小;(3)粒子在磁场中做匀速圆周运动的半径R.例6如图2-4所示,让一价氢离子、一价氦离子和二价氦离子的混合物由静止经过同一加速电场加速,然后在同一偏转电场里偏转,它们是否会分成三股?请说明理由。
本文标题:带电粒子在电磁场中的运动
链接地址:https://www.777doc.com/doc-2450522 .html