您好,欢迎访问三七文档
当前位置:首页 > 财经/贸易 > 资产评估/会计 > 电路基本理论答案第14章
答案14.1解:(a)列写节点电压方程如下:1211221212223111()(1)111()3(2)UUIRRRUUIIRRR式(1)代入式(2)整理得:2321212221211)14()43(1)11(URRURRIURURRI所以Y参数为:32212211443111RRRRRRRY(b)列写节点电压方程如下:1112122111(1)8811111()2(2)88244112(3)44uuiuuuiuuii由式(2)得:12116271iuuu代入式(1)和(3)整理得21221125.025.005.015.0uuiuui所以25.025.005.015.0YS(c)当2U=0时,其等效电路如图(e)所示。由Y参数定义得:1R1R2R2R1U1I2I3I4I(e)1R1R2R2R2U2I(f)图题14.11I)11(5.021212121011112RRRRRRUIYU在图(e)所示电路中11213425.05.0RURUIII所以)11(5.012012212RRUIYU图示电路中不含受控源,为互易网络,因此2112YY。当1U=0时,其等效电路如图(f)所示。)11(5.021212121022221RRRRRRUIYU所以21121221111111115.0RRRRRRRRY(d)01i,11/Rui3112123212332/)()(RRuRRuRiRRuRui23131211uRuRRRR所以33121100RRRRRY答案14.2解:图(a)中AV,5j10j5j22j,A22211IUUIV,由Y参数方程得:11112221222j2j10(1)j5j2j10(2)IYYIYY由图(b)得V1jA222YI(3)对互易网络有:2112YY(4)由式(3)得:22j1SY,代入式(2)得:S)5j5.2(1221YY再代入式(1)得:S)j245.12(11Y所以12.5j2425j5S2.5j5j1.Y答案14.3解:各电压、电流的象函数为:)5.111(32)(1asssU,)5.111(21)(a2sssI,ssI1)(1)6/711(76)(b1sssU,)6/711(72)(b2sssIY参数方程的复频域形式为)()()()()()(22212122121111sUYsUYsIsUYsUYsI当端口2短路时0)(a2sU所以)()()(1a1212a111sUYsIsUYsa5.1)5.111(321)(1a111ssssssUY75.0)5.111(32)5.111(5.0)()(a1a221sssssUsIY当端口2接4电阻时)(4)()()(4)(1b222b121b2b212b111sIYsUYsIsIYsUYs将)6711(72)(),6711(76)(b2b1sssIsssU代入上两式,分别解得3125.025.02212YY所以3125.075.025.05.1sY答案14.4解(a):按网孔列写KVL方程得(2)3)2(2(1)2)2(1221121UUIRRRIURIIRR将式(1)代入式(2)整理得2122113723RIRIURIRIU所以RRRR3723Z(b)消去互感后电路如图14.4(e)所示,列KVL方程如下)(1MLs)(2MLssMsC/1R图14.4(e))(1sU)(2sU)(1sI)(2sI)()1()()()()()(2)(22122221211sIsCsLsIMLssUsIMLssIMLLsRsU所以sCsLMLsMLsMLLsRs/1)()()2()(2222!Z(c)将联接的三个阻抗转换成Y形联接,如图14.4(f)所示,由此电路可直接写出Z参数1jj图14.4(f)0jjj1Z(d)112221(1)()(2)bCCCuRiuuRiRii将式(2)代入式(1)整理得212211iRiRuiRiRRuCCCCb所以CCCCbRRRRRZ答案14.5解(a):列写节点电压方程(2))10151(101(1)101)10151(221121IUUIUU由式(2)得)(103221IUU(3)代入式(1)整理得)(38.0221IUI(4)由式(3)和(4)得3S8.0103A(b):根据A参数定义可得56.04.0111431021112uuuuuuuuAiS1.05.0605.040111431021212iiiuuiuiAiΩ24040/5.060/5.0A111021122uuuiuu56.04.01110212iiiiiu22A所以5S1.02405A(c)按网孔列写KVL方程得(2)1j3jj(1)jj21212211IIUIIU由式(2)得)(2j221IUI(3)代入式(1)化简得:)j5)(2(j)2(221IUU(4)由式(4)和(3)得:2jS)5j2(j2A(d)解:根据基尔霍夫定律和理想变压器方程得2111111nuiRuiRu(1)niRnuiRui/)(//2221211(2)将式(2)代入式(1)整理得))(/()/1(212211inRnuRRu(3)由式(3)和(1)得nRnnRnRR112121A答案14.6解:当开关断开时V51U,A1Ω4131UUI,V3,022UI由传输参数方程得:31352111AA31352111AA当开关接通时A14V,41311ΩUUIU,A316V,2222ΩUIU由参数方程又得2212312311312354AA122212AA所以1S3/123/5A答案14.7解:(a)列写网孔电流方程如下:)2(10040)1(40212211IIUIIU由式(2)得22212121201.04.0UHIHUII(3)代入式(1)整理得2121112114.024UHIHUIU(4)由式(3)和(4)得S01.04.04.024H(b)解:列写节点电压方程如下22212112121)11(IURURIURURR整理得2221115.0URIURIU所以RR/1015.0H(c)根据KVL和理想变压器方程得(3)(2)(1)2222122111iRuuniiuniRu将式(3)及式(2)代入式(1)整理得12212211niinuiRnRu所以0221nnRnRH(d)列写回路电流方程如下:2121212122116641010410101015iiiiiiiiiuiiux整理得212211616105uiiuiu所以S6/113/55H答案14.8解:(1)由阻抗参数方程得(2)53(1)34212211iiuiiu由式(2)得2122.06.0uii(3)代入式(1)得2121116.02.26.08.14uiuiiu(4)由式(3)和(4)得S2.06.06.02.2H(2)若A101i,V202u,由式(3)和(4)解得34VV)206.0102.2(1uA2A)202.0106.0(2i功率W300)2(2010342211iuiup注释:二端口消耗的功率等于两个端口消耗功率之和。答案14.9解:(a)中阻抗矩阵为对称矩阵,且矩阵中元素均为实数,故可用由电阻组成的T形电路来等效。如图(a)所示。其中21312111ZZR,11212222ZZR,1123ZR。(b)阻抗矩阵也为对称矩阵,但其元素含有s/1,因此须用含有电容的T形电路等效,如图(b)所示。其中)/(1/21)(1112111sCRsZZsZ,2122223)(RZZsZ,)/(1/2)(2123sCsZsZ,即11R,32R,F5.021CC(c)所示矩阵不是对称矩阵,对应的二端口方程可写成如下形式221221164223IIIUIIU虚线左侧部分可用T形电路等效,16I用一个电流控制电压源表示,如图(c)所示。1121322116I1I2I(a)(b)(c)F5.0F5.01R2R3R2R1R1C2C2U1U图14.9答案14.10解:对该电路列写节点电压方程如下:232131232132231311231311)()()()()(UYYUgYUgUYYUYIUYUgYYUgUYUYYI与导纳参数标准形式对比得:1131YgYY,123YY213)(YgY,2232YYY解得:21121231222221111,,,YYgYYYYYYYY答案14.11解:选回路如图所示,列写回路电流方程23213313232132233311231311)()()()()()(IZZIZZIZIZZIZUIZIZZZIIZIZZU与阻抗参数标准形式对比得:33111ZZZZ,312ZZ3321ZZZ,3222ZZZ解得:21111ZZZ,12222ZZZ,123ZZ,1/1221ZZ答案14.12解:参见14.5(d),可写出其A参数矩阵为nZnnZnZZ1)1(2121A与标准A参数矩阵比较系数得:1121)1(AnZZ,121AnZ212AZn,221An解得:22121/AAZ,)/(122212AAZ,22/1An由1UnZZ)1(212U)(21InZ(1))(12221InUZnI(2)由式(2)得:222122InZInZU(3)将式(3)代入式(1)化简得:221211)(InZIZZU与阻抗参数标准形式对比得:2111ZZZ,nZZZ/22112,2222/nZZ解得:2222122111ZZZZZ,222212ZZZ,2221ZZn由22/1An或2221ZZn可见,若22A或21Z,22Z为实数,则n为实数.答案14.13解:方法一,将二端口网络用T形电路等效,如图14.13(b)所示。(b)(c)V242224abLRLRV1242
本文标题:电路基本理论答案第14章
链接地址:https://www.777doc.com/doc-2454037 .html