您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 实验三窗函数的特性分析
本科学生实验报告学号***************姓名***************学院物电学院专业、班级***************实验课程名称数字信号分析与处理教师及职称***************开课学期2015至2016学年下学期填报时间2016年3月25日云南师范大学教务处编印一、验设计方案实验序号实验三实验名称窗函数的特性分析实验时间2016/3/25实验室同析楼三栋313实验室1.实验目的分析各种窗函数的时域和频域特性,灵活应用窗函数分析信号频谱和设计FIR数字滤波器。2.实验原理、实验流程或装置示意图在确定信号谱分析、随机信号功率谱估计以及FIR数字滤波器设计中,窗函数的选择对频谱分析和滤波器设计都起着重要的作用。在确定信号谱分析和随机信号功率谱估计中,截短无穷长的序列会造成频率泄露,影响频率普分析的精确度和质量。合理选取窗函数的类型,可以改善泄露现象。在FIR数字滤波器设计中,截短无穷长的系统单位脉冲序列会造成FIR滤波器的幅度特性产生波动,且出出现过渡带。【例1.3.1】写出分析长度N=51点矩形窗的时域波行和频谱的MATLAB程序。[解]N=51;w=boxcar(N);W=fft(w,256);subplot(2,1,1);stem([0:N-1],w);subplot(2,1,2);plot([-128:127],abs(fftshift(W)));运算结果如图1.3.1所示0510152025303540455000.20.40.60.81-150-100-500501001500204060图1.3.1矩形窗的时域波形和频谱3.实验设备及材料计算机,MATLAB软件4.实验方法步骤及注意事项注意事项:(1)在使用MATLAB时应注意中英输入法的切换,在中文输入法输入程序时得到的程序是错误的;(2)MATLAB中两个信号相乘表示为x.*u,中间有个‘.’,同样两个信号相除也是如此;(3)使用MATLAB编写程序时,应新建一个m文件,而不是直接在Comandante窗口下编写程序;(4)在使用MATLAB编程时,应该养成良好的编写习惯。5.实验数据处理方法图像法6.参考文献《信号分析与处理》《MATLAB数值计算与方法》二、报告1.实验现象与结果实验内容1.分析并绘出常用窗函数的时域波形特性。N=51;w=boxcar(N);subplot(3,1,1);stem([0:N-1],w);title('矩形窗的时域波形')w=hanning(N);subplot(3,1,2);stem([0:N-1],w);title('汉宁窗的时域波形')w=hamming(N);subplot(3,1,3);stem([0:N-1],w);title('汉明窗的时域波形')实验运行结果如图3.10510152025303540455000.51矩形窗的时域波形0510152025303540455000.51汉宁窗的时域波形0510152025303540455000.51汉明窗的时域波形图3.1矩形窗、汉宁窗及汉明窗的时域特性波形N=51;w=blackman(N);subplot(3,1,1);stem([0:N-1],w);title('布莱克曼窗的时域波形');w=bartlett(N);subplot(3,1,2);stem([0:N-1],w);title('Bartlett窗的时域波形');beta=2*N;w=Kaiser(N,beta);subplot(3,1,3);stem([0:N-1],w);title('凯泽窗的时域波形');实验结果如图3.2所示0510152025303540455000.51布莱克曼窗的时域波形0510152025303540455000.51Bartlett窗的时域波形0510152025303540455000.51凯泽窗的时域波形图3.2布莱克曼窗、Bartlett窗、凯泽窗时域特性波形3.研究凯泽窗(Kaiser)的参数选择对其时域和频域的影响。(1)固定beta=4,分别取N=20,60,110N=20;beta=4;w=Kaiser(N,beta);subplot(3,2,1);stem([0:N-1],w);title('第3题凯泽窗N=20时域波形');W=fft(w,256);subplot(3,2,2);plot([-128:127],abs(fftshift(W)));title('第3题凯泽窗N=20频域波形')N=60;w=Kaiser(N,beta);subplot(3,2,3);stem([0:N-1],w);title('第三题凯泽窗N=60波形');W=fft(w,256);subplot(3,2,4);plot([-128:127],abs(fftshift(W)));title('第3题凯泽窗N=60频域波形');N=110;w=Kaiser(N,beta);subplot(3,2,5);stem([0:N-1],w);title('第三题凯泽窗N=110波形');W=fft(w,256);subplot(3,2,6);plot([-128:127],abs(fftshift(W)));title('第3题凯泽窗N=110频域波形')实验结果如图3.30510152000.51第3题凯泽窗N=20时域波形-200-1000100200051015第3题凯泽窗N=20频域波形020406000.51第三题凯泽窗N=60波形-200-100010020002040第3题凯泽窗N=60频域波形05010015000.51第三题凯泽窗N=110波形-200-1000100200050100第3题凯泽窗N=110频域波形图3.3N取不同值的时的时域和频域波形(2)固定N=60,分别取beta=1,5,11.N=60beta=1;w=Kaiser(N,beta);subplot(3,2,1);stem([0:N-1],w);title('第3题凯泽窗beta=1时域波形');W=fft(w,256);subplot(3,2,2);plot([-128:127],abs(fftshift(W)));title('第3题凯泽窗beta=1频域波形')beta=5;w=Kaiser(N,beta);subplot(3,2,3);stem([0:N-1],w);title('第三题凯泽窗beta=5波形');W=fft(w,256);subplot(3,2,4);plot([-128:127],abs(fftshift(W)));title('第3题凯泽窗beta=5频域波形');beta=11;w=Kaiser(N,beta);subplot(3,2,5);stem([0:N-1],w);title('第三题凯泽窗beta=11波形');W=fft(w,256);subplot(3,2,6);plot([-128:127],abs(fftshift(W)));title('第3题凯泽窗beta=11频域波形');实验运行结果如图3.4020406000.51第3题凯泽窗beta=1时域波形-200-1000100200050100第3题凯泽窗beta=1频域波形020406000.51第三题凯泽窗beta=5波形-200-100010020002040第3题凯泽窗beta=5频域波形020406000.51第三题凯泽窗beta=11波形-200-100010020002040第3题凯泽窗beta=11频域波形图3.4beta取不同值的时的时域和频域波形4.某序列为kkkx209cos2011cos5.0,使用fft函数分析其频谱。(1)利用不同宽度的N的矩形窗截短该序列,N分别为20,40,160,观察不同长度N的窗对谱分析结果的影响。实验matlab程序代码N=20;k=0:N-1;w=0.5*cos((11*pi*k)/N)+cos((9*pi*k)/N);W=fft(w,256);subplot(3,1,1);plot([-128:127],abs(fftshift(W)));title('第4题x[k]N=20频谱')subplot(3,1,2);N=40;k=0:N-1;w=0.5*cos((11*pi*k)/N)+cos((9*pi*k)/N);W=fft(w,256);plot([-128:127],abs(fftshift(W)));title('第4题x[k]N=40频谱')subplot(3,1,3);N=160;k=0:N-1;w=0.5*cos((11*pi*k)/N)+cos((9*pi*k)/N);W=fft(w,256);plot([-128:127],abs(fftshift(W)));title('第4题x[k]N=160频谱')实验运行结果如图3.5-150-100-50050100150051015第4题x[k]N=20频谱-150-100-500501001500102030第4题x[k]N=40频谱-150-100-50050100150050100第4题x[k]N=160频谱图3.5不同宽度N的矩形窗对谱分析结果影响(2)利用汉明窗重做(1)。实验程序代码N=20;k=0:N-1;w=0.5*cos(((11*pi*k)/N)+cos((9*pi*k)/N)).*(0.54-0.46.*cos(2*pi.*k/(N-1)));W=fft(w,256);subplot(3,1,1);plot([-128:127],abs(fftshift(W)),'r');title('第4题第二问x[k]N=20频谱')subplot(3,1,2);N=40;k=0:N-1;w=0.5*cos(((11*pi*k)/N)+cos((9*pi*k)/N)).*(0.54-0.46.*cos(2*pi.*k/(N-1)));W=fft(w,256);plot([-128:127],abs(fftshift(W)),'r');title('第4题第二问x[k]N=40频谱')subplot(3,1,3);N=160;k=0:N-1;w=0.5*cos(((11*pi*k)/N)+cos((9*pi*k)/N)).*(0.54-0.46.*cos(2*pi.*k/(N-1)));W=fft(w,256);plot([-128:127],abs(fftshift(W)),'r');title('第4题第二问x[k]N=160频谱')实验运行结果如图3.6-150-100-50050100150012第4题第二问x[k]N=20频谱-150-100-500501001500246第4题第二问x[k]N=40频谱-150-100-5005010015001020第4题第二问x[k]N=160频谱图3.6不同宽度N的汉明窗对谱分析结果影响3.实验总结由实验结果可以看出矩形窗波形为方形,汉宁窗,汉明窗,布莱克曼窗,凯泽窗波形为正弦波形,Bartlett窗波形为三角形矩形窗,汉宁窗,汉明窗,布莱克曼窗,Bartlett窗的波形固定,一旦选择了某种窗函数,用它进行谱分析得到的频谱纹波或设计出的滤波器的阻带衰减是确定的。凯泽窗是一种可调窗,可以通过改变窗函数的形状来控制频谱纹波或阻带衰减指标,因而获得广泛的应用。实验思考题:1.什么是信号截短?什么是吉布斯现象?增加长度N能消除吉布斯现象吗?应如何解决?答:将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。这种现象称为吉布斯效应。增加长度N能消除吉布斯现象。教师评语及评分:签名:年月日
本文标题:实验三窗函数的特性分析
链接地址:https://www.777doc.com/doc-2458338 .html