您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 实验八模型设定偏误问题
实验八模型设定偏误问题姓名:何健华学号:201330110203班级:13金融数学2班一实验目的:掌握模型设定偏误问题的估计与应用,熟悉EViews的基本操作。二实验要求:应用教材P183例子5.3.1的案例,利用RESET检验检验模型设定偏误问题;应用教材P185例子5.3.2的案例,利用Box-Cox变换比较线性模型与双对数线性模型的优劣。三实验原理:普通最小二乘法、阿尔蒙法、格兰杰因果关系检验、DW检验。四预备知识:普通最小二乘法,F检验,Box-Cox变换。五实验步骤一、下表列出了中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L。序号工业总产值Y(亿)序号工业总产值Y(亿元)资产合计K(亿元)职工人数L(万人)序号工业总产值Y(亿元)资产合计K(亿元)职工人数L(万人)13722.703078.2211317812.701118.814321442.521684.4367181899.702052.166131752.372742.7784193692.856113.1124041451.291973.8227204732.909228.2522255149.305917.01327212180.232866.658062291.161758.77120222539.762545.639671345.17939.1058233046.954787.902228656.77694.9431242192.633255.291639370.18363.4816255364.838129.68244101590.362511.9966264834.685260.2014511616.71973.7358277549.587518.7913812617.94516.012828867.91984.5246134429.193785.9161294611.3918626.94218145749.028688.0325430170.30610.9119151781.372798.908331325.531523.1945161243.071808.4433假设有人不同意原幂函数模型是正确设定的模型,而下面的线性形式是正确设定的模型,将如何检验哪一个模型设定更正确?iiiiLKY2101.建立工作工作文件并录入数据,得到图1.1图1.12.采用RESET检验来检验模型的设定偏误2.1对于原幂函数形式的模型,变换成双对数模型0lnYalnKlnL采用OLS进行估计,估计结果如图1.2。图1.2在图1.2窗口选择“Views\StabilityTest\RamseyRESETTest...”,在出现的RESETSpecification窗口的Numberoffittedterms栏内输入“1”,点击“OK”,得到检验结果如图1.3所示。图1.3由F统计量的伴随概率知,在5%的显著性水平下,不拒绝原模型没有设定偏误的假设。2.2采用OLS对线性模型进行估计,估计结果如图1.4。图1.4同样地,选择“Views\StabilityTest\RamseyRESETTest”,在新出现的对话框中输入“1”,得如图1.5所示的RESET检验结果。图1.5首先,尽管K与L的参数估计值的t统计量在5%的显著性水平下都是显著的,但拟合优度比原幂函数的模型低。由F统计量的伴随概率知,在5%的显著性水平下,拒绝原模型没有设定偏误的假设。可见,相比较而言,线性模型确有设定偏误,而原幂函数模型没有设定偏误问题。二、通过Box-Cox变换检验中国居民总量消费函数的建立中,原线性模型XY10与双对数线性模型哪一个最优?表2.6.3中国居民总量消费支出与收入资料单位:亿元年份GDPCONSCPITAXGDPCXY19783605.61759.146.21519.287802.56678.83806.719794092.62011.547.07537.828694.27551.64273.219804592.92331.250.62571.709073.77944.24605.519815008.82627.951.90629.899651.88438.05063.919825590.02902.952.95700.0210557.39235.25482.419836216.23231.154.00775.5911510.810074.65983.219847362.73742.055.47947.3513272.811565.06745.719859076.74687.460.652040.7914966.811601.77729.2198610508.55302.164.572090.3716273.713036.58210.9198712277.46126.169.302140.3617716.314627.78840.0198815388.67868.182.302390.4718698.715794.09560.5198917311.38812.697.002727.4017847.415035.59085.5199019347.89450.9100.002821.8619347.816525.99450.9199122577.410730.6103.422990.1721830.918939.610375.8199227565.213000.1110.033296.9125053.022056.511815.3199336938.116412.1126.204255.3029269.125897.313004.7199450217.421844.2156.655126.8832056.228783.413944.2199563216.928369.7183.416038.0434467.531175.415467.9199674163.633955.9198.666909.8237331.933853.717092.5199781658.536921.5204.218234.0439988.535956.218080.6199886531.639229.3202.599262.8042713.138140.919364.1199991125.041920.4199.7210682.5845625.840277.020989.3200098749.045854.6200.5512581.5149238.042964.622863.92001108972.449213.2201.9415301.3853962.546385.424370.12002120350.352571.3200.3217636.4560078.051274.026243.22003136398.856834.4202.7320017.3167282.257408.128035.02004160280.463833.5210.6324165.6876096.364623.130306.22005188692.171217.5214.4228778.5488002.174580.433214.42006221170.580120.5217.6534809.72101616.385623.136811.21.建立工作工作文件并录入数据,得到图2.1图2.12.采用Box-Cox变换检验原线性模型与双对数线性模型的优劣2.1对原线性模型采用OLS进行估计,估计结果如图2.2。图2.2由图中2.2的数据,可得:ˆY=2091.295+0.437527X(6.242914)(47.05950)21R=0.987955F=2214.596RSS=30259014,,2.2对双数线性模型采用OLS进行估计,估计结果如图2.3。图2.3由图2.3的数据,可得:ˆlnY=0.587306+0.880017lnX(4.112865)(61.89235)22R=0.993001F=3830.664RSS=0.087076,,虽然双对数线性模型的可决系数大于原线性模型,残差平方和小于原线性模型,但不能就此认为双对数线性模型“优于”线性模型。2.3采用Box-Cox变换后再进行比较在主界面菜单选择“Quick\GenerateSeries”,在出现的“GenerateSeriesbyEquation”窗口中输入“LY=LOG(Y)”,点击OK按钮即可生成Y的对数序列LY。然后在主页的命令编辑区域中输入“scalarY1=@exp(@sum(LY)/29)”,如图2.4,点回车键生成一个标量Y1。图2.4选择“Quick\GenerateSeries”,在出现的“GenerateSeriesbyEquation”窗口中输入“Y2=Y/Y1”,点击OK按钮即可生成Y的对数序列Y2。作Y2关于X的线性OLS回归得如图2.5所示结果。图2.5由图2.5的回归结果可得:2ˆY=0.172787+0.0000361X(6.242914)(47.05950)23R=0.987955F=2214.596RSS=0.206559,,作Y2关于X的双对数线性OLS回归得如图2.6所示结果。图2.6由图2.6的回归结果可得:2ˆlnY=-8.813930+0.880017lnX(-61.72335)(61.89235)24R=0.993001F=3830.664RSS=0.087076,,于是34RSS129lnln2.372212.532RSS2n该值大于在5%显著性水平下自由度为1的2分布的临界值3.841,因此可判断双对数模型确实“优于”原线性模型。
本文标题:实验八模型设定偏误问题
链接地址:https://www.777doc.com/doc-2459236 .html