您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 电力系统稳态分析大作业——基于高斯赛德尔法潮流计算
1电力系统稳态分析姓名:学号:学院(系):自动化学院专业:电气工程题目:基于Matlab的高斯和高斯—赛德尔法的潮流计算指导老师:2014年12月2摘要电力系统潮流计算是电力系统稳态运行分析中最基本和最重要的计算之一,是电力系统其他分析计算的基础,也是电力网规划、运行研究分析的一种方法,在电力系统中具有举足轻重的作用。经典算法有高斯法,高斯-赛德尔迭代法及牛顿法等,近年来学者们开始应用非线性规划法及智能算法等优化方法求解潮流问题,提高了收敛的可靠性。高斯-赛德尔迭代法开始于上世纪50年代,是一种直接迭代求解方程的算法,既可以解线性方程组,可以解非线性方程组。高斯法求解节点电压的特点是:在计算节点i第k+1次的迭代电压时,前后所用的电压都是第k次迭代的结果,整个一轮潮流迭代完成后,把所有计算出的电压新值用于下一轮电压新值的计算过程中。该计算方法简单,占用计算机内存小,能直接利用迭代求解节点电压方程,对电压初值的选取要求不是很严格。但它的收敛性能较差,系统规模增大时,迭代次数急剧上升。本文首先对高斯—赛德尔算法进行了综述,然后推导了该算法的计算过程,通过MATLAB软件计算了该算法的实例。关键字:潮流计算高斯法高斯-赛德尔法迭代3AbstractPowerflowcalculationistheoneofthemostbasicandthemostimportantcalculationinthesteadystateanalysisofpowersystem.Itisthefoundationofotheranalyticalcalculationofpowersystem,amethodofanalysisandplanning,operationofpowernetwork.Soitplaysadecisiveroleinthepowersystem.TheclassicalalgorithmistheGaussmethod,Gauss-SeideliterativemethodandNewton'smethod,inrecentyears.Scholarsbegantoapplicatenonlinearprogrammingmethodandintelligentalgorithmoptimizationmethodforsolvingpowerflowproblem,enhancesthereliabilityofconvergence.Gauss-Seideliterativemethodbeganinthe50'soflastcentury,isadirectiterationequationalgorithm,whichcansolvethelinearequationandnonlinearequations.CharacteristicsofGauss'smethodtocalculatethenodevoltageis:intheiterativecalculationofnodei’sK+1-timesvoltage,thevoltageisusedtheresultsofK-timesiterative.Aftercompletingthewholeroundofpowerflowiteration,allvoltagevalueisusedtocalculatethenextroundofnewvoltagevalueof.Themethodissimpleandcapturessmallmemory.Italsocandirectlyusetheiterativesolutionofthenodevoltageequation.theselectionofinitialvaluesarenotverystrict.Butithaspoorconvergenceperformance.Thesystemscaleincreases,whenthenumberofiterationsrise.ThispapergivesanoverviewoftheGaussSeidelalgorithmatthefirst.ThenitshowthecalculationprocessofthisalgorithmthroughtheMATLABsoftware.Keywords:GaussGauss-Seideliterativemethodthemethodofpowerflowcalculation4目录1高斯迭代法和高斯—赛德尔迭代法概述................................52节点导纳矩阵......................................................62.1不定导纳矩阵..................................................62.2导纳矩阵......................................................63高斯迭代法........................................................74高斯-赛德尔迭代法.................................................84.1高斯-赛德尔法的原理...........................................84.2关于高斯法和高斯-赛德尔法的讨论...............................85实例验证..........................................................95.1案例描述.....................................................95.2模型的建立..................................................105.3案例程序流程图..............................................115.4案例程序....................................................135.5程序运行步骤和结果..........................................176结果分析.........................................................207总结.............................................................217参考文献.........................................................225一高斯迭代法和高斯—赛德尔迭代法概述电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。给定电力系统的网络结构,参数和决定系统运行状况的边界条件,电力系统的稳态运行状态便随之确定。潮流计算就是要通过数值仿真的方法把电力系统的详细运行状态呈现给运行和工作人员,以便研究系统在给定条件下的稳定运行特点。潮流计算是电力系统分析中最基本、最重要的计算,是电力系统运行、规划以及安全性、可靠性分析和优化的基础,也是各种电磁暂态和机电暂态分析的基础和出发点。20世纪50年代中期,随着电子计算机的发展,人们开始在计算机上用数学模拟的方法进行潮流计算。最初在计算机上实现的潮流计算方法是以导纳矩阵为基础的高斯迭代法(Gauss法)。这种方法内存需求小,但收敛性差。后来在高斯迭代法上进行改进,这就是高斯——赛德尔迭代法(Gauss一Seidelmethod),潮流计算高斯—赛德尔迭代法,分为导纳矩阵迭代法和阻抗矩阵迭代法两种。前者是以节点导纳矩阵为基础建立的赛德尔迭代格式,后者是以节点阻扰矩阵为基础建立的赛德尔迭代格式。高斯——赛德尔迭代法这是数学上求解线性或非线性方程组的一种常用的迭代方法。牛顿-拉夫逊方法是解非线性代数方程组的一种基本方法,在潮流计算中也得到了应用。20世纪60年代中后期,系数矩阵技术和编号优化技术的提出使牛顿-拉夫逊的解题规模和计算效率进一步提高,至今仍是潮流计算中的广泛采用的优秀算法。20世纪70年代中期,Stott在大量计算实践的基础上提出了潮流计算的快速分解法,是潮流计算的速度大大提高,可以应用于在线,但是直至20世纪80年代末期才对快速分解法潮流的收敛性给出了比较满意的解释。由于潮流计算在电力系统中的特殊地位和作用,对其计算方法有如下较高的要求:1.要有可靠的收敛性,对不同的系统及不同的运行条件都能收敛;2.占用内存小、计算速度快;63.调整和修改容易,使用灵活方便。本文使用的高斯法和高斯-赛德尔迭代法,开始于上世纪50年代,是一种直接迭代求解方程的算法,既可以解线性方程组,可以解非线性方程组。高斯法求解节点电压的特点是:在计算节点i第k+1次的迭代电压时,前后所用的电压都是第k次迭代的结果,整个一轮潮流迭代完成后,把所有计算出的电压新值用于下一轮电压新值的计算过程中。高斯-赛德尔法是刚刚计算出的x值在下次迭代中被立即使用。两种方法都计算方法简单,占用计算机内存小,能直接利用迭代求解节点电压方程,对电压初值的选取要求不是很严格,但收敛性能较差,系统规模增大时,迭代次数急剧上升。二节点导纳矩阵1不定导纳矩阵令连通的电力网络的节点数为N,大地作为节点未包括在内。网络中有b条支路,包括接地支路。如果把地节点增广进来,电网的(N+1)×b阶节点支路的关联矩阵A0,b阶支路导纳矩阵是yb,定义(N+1)×(N+1)阶节点导纳矩阵Y0为TbAyAY000(2-1)并有网络方程.0.0IVY(2-2)2导纳矩阵选地节点为电压参考点,将它排在第N+1位,令参考点点位为零,则可将节点不定导纳矩阵表示的网络方程(2-1)写成分块的形式[Yy0yoTy00][V0̇]=[II0̇̇](2-3)展开后有YV̇=İ(2-4)和y0TV̇=İ0(2-5)7式(2-5)中Y为N×N阶矩阵,V和I分别为N维节点电压和电流列矢量,I0为流入地节点的电流。三高斯迭代法高斯迭代法是最早在计算机上实现的潮流计算方法。这种方法编程简单,在某些应用领域,如配电网计算潮流计算中还有应用。另外,也用于为牛顿-拉夫逊法提供初值。考察基于节点导纳矩阵的高斯迭代法。在网络方程(2-4)中,将平衡点s排在最后,并将导纳矩阵写成分块的形式,取出前n个方程有YnV̇n+YsV̇s=İn(3-1)平衡节点s的电压V̇s给定,n个节点的注入电流矢量İn已知,则有YnV̇n=İn−YsV̇s(3-2)实际电力系统给定量是n个节点的注入功率。注入电流和注入功率之间的关系是İi=Si̇̃Vi̇̃i=1,2,3….n(3-3)其中Vi̇̃和Si̇̃为V̇i和Si̇的共轭复数。写成矢量的形式İn=[Si̇̃Vi̇̃](3-4)再把Yn写成对角线矩阵D和严格上三角矩阵U以及严格下三角矩阵L的和,可以得到Yn=L+D+U其中L=[0Y21⋮⋱Yn,1…Yn,n−10],D=[Y11Y22Y33Y44],U=[0Y12…Y1n⋱⋮Yn−1,n0]代入式(2-2),经过整理可得到Vṅ=D−1{Iṅ−YsVṡ−LVṅ−UVṅ}(3-5)8考虑到电流和功率的关系式,(3-5)可以写成为Vi̇(k+1)=1Yii{Si̇̃Vi̇̃(k)−YisVṡ−∑Yiji−1j=1V̇j(k)−∑Yijnj=i+1V̇j(k)}i=1,2,…n(3-6)给定,i=
本文标题:电力系统稳态分析大作业——基于高斯赛德尔法潮流计算
链接地址:https://www.777doc.com/doc-2465067 .html