您好,欢迎访问三七文档
第1页共6页循环结构一、教学内容分析《循环结构》是人民教育出版社课程教材研究所编著的《普通高中课程标准试验教科书数学3(必修)》(A版)中§1。1。2的第二课时的内容。(1)算法是高中数学课程中的新内容,算法的思想是非常重要的,算法思想已逐渐成为每个现代人所必须具备的数学素养。(2)本节课的内容是循环结构,它与顺序结构、条件分支结构是算法的三种基本逻辑结构,可以表示任何一个算法。并且循环结构是算法这一部分的重点和难点,它的重要性就是充分体现计算机的优势,也即能以极快的速度进行重复计算。二、学生学习情况分析学生已经学习了有关算法和框图的基础知识。绝大多数同学对算法和框图的学习有相当的兴趣和积极性。但在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强。三、设计思想建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构。基于以上理论,本节课遵循引导发现,循序渐进的思路,采用问题探究式教学,运用多媒体,投影仪辅助,倡导“自主、合作、探究”的学习方式。具体流程如下:创设情景(课前准备、引入实例)→授新设疑(自主探索形成概念→理解概念能识别框图)→质疑问难、论争辩难(进一步加深对概念的理解→突破难点)→沟通发展(反馈练习→归纳小结)→布置作业。四、教学目标理解循环结构,能识别和理解简单的框图的功能,通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力;能运用循环结构设计程序框图解决简单的问题,感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。五、教学重点与难点重点:理解循环结构,能识别和画出简单的循环结构框图。难点:循环结构中循环条件和循环体的确定。第2页共6页六、教学过程设计(一)创设情境引例:德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。(课本例6)你能否写出求的值的一个算法,并用框图表示你的算法。此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解。【设计意图】通过高斯求和的故事,复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。(二)授新设疑1.循序渐进,理解知识(1)引进“计数变量”、“累加变量”。借助“计数变量”和“累加变量”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。①将“递推求和”转化为“循环求和”的缘由及转化的方法和途径引例“求123100的值”这个问题的自然求和过程可以表示为:21324312,3,4(2,3,,100)iiSSSSSSSSii用递推公式表示为:111(2,3,100)iiSiSSi直接利用这个递推公式构造算法在步骤1iiSSi中使用了123100,,SSSS共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤1iiSSi中提取出共同的结构,即第i步的结果=第(i-1)步的结果+i。若引进一个计数变量i来表示计算到第几步,一个累加变量sum来表示每一步的计算结果,则第i步可以表示为赋值过程1,iisumsumi。②“1ii”、“sumsumi”的含义利用多媒体动画展示计算机中计数器的工作原理,借助形象直观对知识点进行强调说明1)1ii的作用是将赋值号右边表达式1i的值赋给赋值号左边的变量i。2)赋值号“=”右边的变量“i”表示前一步累加所得的和,赋值号“=”左边的“i”表示该步累加所得的和,含义不同。3)赋值号“=”与数学中的等号意义不同。1ii在数学中是不成立的。4)sumsumi的作用是将赋值号右边表达式sumi的值赋给赋值号左边的变第3页共6页量sum。(类比1ii理解)借助“计数变量”、“累加变量”既突破了难点,同时也使学生理解了“1ii”、“sumsumi”的含义。③初始化变量,设置循环终止条件由sum的初始值为0,i的值由1增加到100,可以初始化循环变量和设置循环终止条件。(2)循环结构的概念从某处开始,按照一定条件,反复执行某一处理步骤的结构称为循环结构。教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念(循环变量、循环体、循环终止的条件)。【设计意图】这样讲解既突出了重点又突破了难点,同时学生在教师引导下,在已有探索经验的基础上,借助多媒体的形象直观,共同完成问题的抽象过程和算法的构建过程。体现研究问题常用的“由特殊到一般”的思维方式。2.类比探究,掌握知识例1:改造引例的程序框图表示①求246100的值②求11112350的值③求123200的值此例可由学生独立思考、回答,师生共同点评完成。【设计意图】通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体开始i=1sum=0i=i+1sum=sum+ii≤100?结束输出sum是否循环变量初始化循环体循环条件第4页共6页会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。例2:根据程序框图回答下面的问题图A图B(1)图中箭头指向①时,输出sum=______;指向②时输出sum=_____。(2)该程序框图的算法功能是_______________________。(3)去掉条件“5i”按程序框图所蕴含的算法,能执行到底吗,若能执行到底,最后输出的结果是什么?对比练习:(1)图B输出sum=_____。(2)图A指向②时与图B有何不同?你能得到什么结论?(3)对比“引例”与“例2”的程序框图,试说明二者的区别和联系?可由学生小组讨论,教师巡视,加强对学生的个别指导,再由学生分析。例2是写出程序框图的运算结果,及其功能。【设计意图】设计此例的目的是让学生通过类比意识到:①循环结构不能是永无终止的死循环,一定要在某个条件下终止循环,这就需要条件结构来做出判断,因此,循环结构一定包含条件结构。②循环结构中语句的顺序对算法的影响。③当型循环结构与直到型循环结构的区别。(三)质疑问难、论争辩难例3图(1),图(2),图(3),图(4)是为计算而绘制的程序框图。根据程序开始i=1sum=0i=i+1sum=sum+ii5?结束输出sum是否开始i=1sum=0sum=sum+ii=i+1i5?结束是否输出sum①②第5页共6页框图回答下面的问题:图(1)图(2)图(3)图(4)①其中正确的程序框图有哪几个?错误的要指出错在哪里。②错误的程序框图中,按该程序框图所蕴含的算法,能执行到底吗?若能执行到底,最后输出的结果是什么?③根据上面的回答总结出应用循环结构编制程序框图应该注意哪几方面的问题?【设计意图】通过类比,自主探究,帮助学生深入理解知识,完善知识结构,提升认知水平。通过小组讨论,实现生生互动,师生互助,丰富情感体验,活跃课堂气开始i=2s=0i=i+1s=s+i2i100?结束输出s是否开始i=4s=22i=i+1s=s+i2i100?结束是否输出s开始i=42s=22i=i+1s=s+ii100?结束输出s是否开始i=4s=22s=s+ii100?结束输出s是否第6页共6页氛。(四)沟通发展、归纳小结1.沟通发展仿照本节课例题,同桌俩人一人编题一人解答。【设计意图】通过练习进一步巩固所学知识,培养和提升学生的认知水平。沟通发展,有助于及时查漏补缺,保持学生学习的热情和信心。2.课后小节①理解循环结构的逻辑。②明确条件结构与循环结构的区别,联系。③当型循环结构与直到型循环结构的区别。④数学思想方法:算法思想,类比方法。【设计意图】通过小结使学生对本节课的知识有一个全面的认识,掌握知识。为今后学习其它知识打基础。(五)布置作业①课本P11习题1-1A组2②课外拓展:写出一个求满足1×2×3×…×n>5000的最小正整数的算法并画出相应的程序框图。【设计意图】书面作业第一个层次要求所有学生完成,第二个层次,只要求学有余力的同学完成。体现了差异发展教学。七、教学反思循环结构这部分内容在算法中起着承上启下的作用。本节施教过程中,基本完成设计构思,教学效果良好,但仍发现一些不足之处:1、学生对循环终止条件的确定还存在一定困难,尤其循环体中“1ii”、“sumsumi”的顺序对终止条件的影响。2、教学过程中对循环体“1ii”、“sumsumi”中滲透的函数思想(数学本质)体现不够。对算法教学的思考:教材将“算法与程序框图”和“基本算法语句”分开处理。是否将这两部分内容结合起来处理,在讲基本结构的时候,通过基本算法语句在计算机上演示计算结果,是否会更生动,效果会更好。强调基本结构,适当降低程序框图和算法语句的难度(学生反映其中的一些例题结构太复杂,理解比较吃力)。算法作为数学与计算机技术的桥梁,体现了数学研究的一个新的方向,其作用是勿庸质疑的,但作为高中数学课程中的新内容,如何将其更完美地展现给学生,还需大家共同努力!
本文标题:循环结构教学设计
链接地址:https://www.777doc.com/doc-2469317 .html