您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 微积分经济类考研基础习题第四章不定积分
1微积分经济类考研基础习题第四章不定积分一、填空题:1.若)(xf连续,则))((dxxf=.2.dxxx2)1(.3.dxctgxxx)(csccsc.4.Cedxxfx33)(,则)(xf.5.dxxxxsincos2cos=.6.xdxexsincos=.7.dxx1arctan.8.dxtgxxtg)(2.9.dxxx2412.10.dxxx26101.二、选择题1.若)(xf是)(xg的原函数,则().(A)Cxgdxxf)()((B)Cxfdxxg)()((C)Cxgdxxg)()((D)Cxgdxxf)()(2.如果)()(xdgxdf,则一定有().(A))()(xgxf(B))()(xgxf(C))()(xdgxdf(D))()(xgdxfd23.若cexdxxfx22)(,则)(xf().(A)xxe22(B)xex222(C)xxe2(D))1(22xxex4.若CxFdxxf)()(,则dxefexx)(().(A)ceFx)((B)ceFx)((C)ceFx)((D)ceFx)(5.设xe是)(xf的一个原函数,则dxxxf)(().(A)cxex)1((B)cxex)1((C)cxex)1((D)cxex)1(6.设xexf)(,则dxxxf)(ln().(A)cx1(B)cxln(C)cx1(D)cxln7.若cxdxxf2)(,则dxxxf)1(2().(A)cx22)1(2(B)cx22)1(2(C)cx22)1(21(D)cx22)1(218.xdx2sin().(A)cx2cos21(B)cx2sin(C)cx2cos(D)cx2cos219.xdxcos1().(A)cxtgxsec(B)cxctgxcsc3(C)cxtg2(D))42(xtg10.已知xefx1)(,则)(xf().(A)Cxln1(B)Cxx221(C)Cxx2ln21ln(D)Cxxln11.函数xxfsin)(的一个原函数是().(A)xcos(B)xcos(C)02cos0cos)(xxxxxF(D)0cos0cos)(xCxxCxxF三、计算题1.求dxxxx)11(2.2.求dxxx1023)51(.3.求dxxxx23cos1cossin.4.求dxxx)1ln(2.5.求dxxsin.46.求arcctgxdxx2.7.求.2322)(axdx.8.求dxxxx111422.9.求dxxxx652.10.求211xdxx.11.求dxxxx3442.512.求dxxxxx651233.四、附加题1.求dxxxxx4422cossincossin.2.求)2(lnlnxxxdx.3.求xdxex22sin.4.求1222xxeedx.5.求xdxxnnln.6.设2ln)1(222xxxf,且xxfln)]([,求dxx)(.67.设xxxf22tansin)2(cos,试求)(xf.8.求积分:(1)xdxsin1;(2)dxeexxarctan.9.若曲线)(xfy上点),(yx处的切线斜率与3x成正比例,并知该曲线通过点)9,2(),6,1(BA,求该曲线方程.
本文标题:微积分经济类考研基础习题第四章不定积分
链接地址:https://www.777doc.com/doc-2470822 .html