您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 微观经济学课后答案—高鸿业-副本
2010级旅游管理班学习资料集学习委员:丁力1西方经济学——高鸿业第五7已知生产函数Q=A1/4L1/4K1/2;各要素价格分别为PA=1,PL=1。PK=2;假定厂商处于短期生产,且16k。推导:该厂商短期生产的总成本函数和平均成本函数;总可变成本函数和平均可变函数;边际成本函数。解:因为16k,所以41414LAQ(1)14341414343414143BALALAPPLALALQAQMPMPLALQMPLAAQMP所以L=A(2)由(1)(2)可知L=A=Q2/16又TC(Q)=PA&A(Q)+PL&L(Q)+PK&16=Q2/16+Q2/16+32=Q2/8+32AC(Q)=Q/8+32/QTVC(Q)=Q2/8AVC(Q)=Q/8MC=Q/48已知某厂商的生产函数为Q=0。5L1/3K2/3;当资本投入量K=50时资本的总价格为500;劳动的价格PL=5,求:(1)劳动的投入函数L=L(Q)。(2)总成本函数,平均成本函数和边际成本函数。当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?2010级旅游管理班学习资料集学习委员:丁力2解:(1)当K=50时,PK·K=PK·50=500,所以PK=10。MPL=1/6L-2/3K2/3MPK=2/6L1/3K-1/3105626131313232KLkLPPKLKLMPMP整理得K/L=1/1,即K=L。将其代入Q=0。5L1/3K2/3,可得:L(Q)=2Q(2)STC=ω·L(Q)+r·50=5·2Q+500=10Q+500SAC=10+500/QSMC=10(3)由(1)可知,K=L,且已知K=50,所以。有L=50。代入Q=0。5L1/3K2/3,有Q=25。又π=TR-STC=100Q-10Q-500=1750所以利润最大化时的产量Q=25,利润π=17509。假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。解答:由总成本和边际成本之间的关系。有STC(Q)=Q3-4Q2+100Q+C=Q3-4Q2+100Q+TFC2010级旅游管理班学习资料集学习委员:丁力32400=103-4*102+100*10+TFCTFC=800进一步可得以下函数STC(Q)=Q3-4Q2+100Q+800SAC(Q)=STC(Q)/Q=Q2-4Q+100+800/QAVC(Q)=TVC(Q)/Q=Q2-4Q+10010。试用图说明短期成本曲线相互之间的关系。解:如图,TC曲线是一条由水平的TFC曲线与纵轴的交点出发的向右上方倾斜的曲线。在每一个产量上,TC曲线和TVC曲线之间的垂直距离都等于固定的不变成本TFC。TC曲线和TVC曲线在同一个产量水平上各自存在一个拐点B和C。在拐点以前,TC曲线和TVC曲线的斜率是递减的;在拐点以后,TC曲线和TVC曲线的斜率是递增的。AFC曲线随产量的增加呈一直下降趋势。AVC曲线,AC曲线和MC曲线均呈U形特征。MC先于AC和AVC曲线转为递增,MC曲线和AVC曲线相交于AVC曲线的最低点F,MC曲线与AC曲线相交于AC曲线的最低点D。AC曲线高于AVC曲线,它们之间的距离相当于AFC。且随着产量的增加而逐渐接近。但永远不能相交。11。试用图从短期总成本曲线推导长期总成本曲线,并说明长期总成本曲线的经济含义。如图5—4所示,假设长期中只有三种可供选择的生产规模,分别由2010级旅游管理班学习资料集学习委员:丁力4图中的三条STC曲线表示。从图5—4中看,生产规模由小到大依次为STC1、STC2、STC3。现在假定生产Q2的产量。长期中所有的要素都可以调整,因此厂商可以通过对要素的调整选择最优生产规模,以最低的总成本生产每一产量水平。在d、b、e三点中b点代表的成本水平最低,所以长期中厂商在STC2曲线所代表的生产规模生产Q2产量,所以b点在LTC曲线上。这里b点是LTC曲线与STC曲线的切点,代表着生产Q2产量的最优规模和最低成本。通过对每一产量水平进行相同的分析,可以找出长期中厂商在每一产量水平上的最优生产规模和最低长期总成本,也就是可以找出无数个类似的b(如a、c)点,连接这些点即可得到长期总成本曲线。长期总成本是无数条短期总成本曲线的包络线。长期总成本曲线的经济含义:LTC曲线表示长期内厂商在每一产量水平上由最优生产规模所带来的最小的生产总成本。12。试用图从短期平均成本曲线推导长期平均成本曲线,并说明长期平均成本曲线的经济含义。解:假设可供厂商选择的生产规模只有三种:SAC1、SAC2、SAC3,如右上图所示,规模大小依次为SAC3、SAC2、SAC1。现在来分析长期中厂商如何根据产量选择最优生产规模。假定厂商生产Q1的产量水平,厂商选择SAC1进行生产。因此此时的成本OC1是生产Q1产量的最低成本。如果生产Q2产量,可供厂商选择的生产规模是SAC1和SAC2,因为SAC2的成本较低,所以厂商会选择SAC2曲线进行生产,2010级旅游管理班学习资料集学习委员:丁力5其成本为OC2。如果生产Q3,则厂商会选择SAC3曲线所代表的生产规模进行生产。有时某一种产出水平可以用两种生产规模中的任一种进行生产,而产生相同的平均成本。例如生产Q1′的产量水平,即可选用SAC1曲线所代表的较小生产规模进行生产,也可选用SAC2曲线所代表的中等生产规模进行生产,两种生产规模产生相同的生产成本。厂商究竟选哪一种生产规模进行生产,要看长期中产品的销售量是扩张还是收缩。如果产品销售量可能扩张,则应选用SAC2所代表的生产规模;如果产品销售量收缩,则应选用SAC1所代表的生产规模。由此可以得出只有三种可供选择的生产规模时的LAC曲线,即图中SAC曲线的实线部分。在理论分析中,常假定存在无数个可供厂商选择的生产规模,从而有无数条SAC曲线,于是便得到如图5—7所示的长期平均成本曲线,LAC曲线是无数条SAC曲线的包络线。LAC曲线经济含义:它表示厂商在长期内在每一产量水平上,通过选择最优生产规模所实现的最小的平均成本。13。试用图从短期边际成本曲线推导长期边际成本曲线,并说明长期边际成本曲线的经济含义。解:图中,在Q1产量上,生产该产量的最优生产规模由SAC1曲线和SMC1曲线所代表,而PQ1既是最优的短期边际成本,又是最优的长期边际成本,即有LMC=SMC1=PQ1。同理,在Q2产量上,有LMC=SMC2=RQ2。在Q3产量上,有LMC=SMC3=SQ3。在生产规模可以无限细分的条件下,2010级旅游管理班学习资料集学习委员:丁力6可以得到无数个类似于P,R,S的点,将这些连接起来就得到一条光滑的LMC曲线。LMC曲线的经济含义:它表示厂商在长期内在每一产量水平上,通过选择最优生产规模所实现的最小的边际成本。第六章练习题参考答案1、已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产?(3)厂商的短期供给函数。解答:(1)因为STC=0.1Q3-2Q2+15Q+10所以SMC=dQdSTC=0.3Q3-4Q+15根据完全竞争厂商实现利润最大化原则P=SMC,且已知P=55,于是有:0.3Q2-4Q+15=55整理得:0.3Q2-4Q-40=0解得利润最大化的产量Q*=20(负值舍去了)以Q*=20代入利润等式有:2010级旅游管理班学习资料集学习委员:丁力7=TR-STC=PQ-STC=(55×20)-(0.1×203-2×202+15×20+10)=1100-310=790即厂商短期均衡的产量Q*=20,利润л=790(2)当市场价格下降为P小于平均可变成本AVC即PAVC时,厂商必须停产。而此时的价格P必定小于最小的可变平均成本AVC。根据题意,有:AVC=QQQQQTVC1521.023=0.1Q2-2Q+15令0dQdAVC,即有:022.0QdQdAVC解得Q=10且02.022dQAVCd故Q=10时,AVC(Q)达最小值。以Q=10代入AVC(Q)有:最小的可变平均成本AVC=0.1×102-2×10+15=5于是,当市场价格P5时,厂商必须停产。(3)根据完全厂商短期实现利润最大化原则P=SMC,有:0.3Q2-4Q+15=p整理得0.3Q2-4Q+(15-P)=0解得6.0)15(2.1164PQ根据利润最大化的二阶条件CMRM的要求,取解为:6.022.14PQ2010级旅游管理班学习资料集学习委员:丁力8考虑到该厂商在短期只有在P=5才生产,而P<5时必定会停产,所以,该厂商的短期供给函数Q=f(P)为:6.022.14PQ,P=5Q=0P<52、已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:(1)当市场商品价格为P=100时,厂商实现MR=LMC时的产量、平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)当市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。解答:(1)根据题意,有:402432QQdQdLTCLMC且完全竞争厂商的P=MR,根据已知条件P=100,故有MR=100。由利润最大化的原则MR=LMC,得:3Q2-24Q+40=100整理得Q2-8Q-20=0解得Q=10(负值舍去了)又因为平均成本函数4012)()(2QQQQSTCQSAC所以,以Q=10代入上式,得:平均成本值SAC=102-12×10+40=202010级旅游管理班学习资料集学习委员:丁力9最后,利润=TR-STC=PQ-STC=(100×10)-(103-12×102+40×10)=1000-200=800因此,当市场价格P=100时,厂商实现MR=LMC时的产量Q=10,平均成本SAC=20,利润为л=800。(2)由已知的LTC函数,可得:40124012)()(223QQQQQQQQLTCQLAC令0)(dQQdLAC,即有:0122)(QdQQdLAC,解得Q=6且02)(22dQQLACd解得Q=6所以Q=6是长期平均成本最小化的解。以Q=6代入LAC(Q),得平均成本的最小值为:LAC=62-12×6+40=4由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。(3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场的长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660-15P,便可以得到市场的长期均衡数量为Q=660-15×4=600。现已求得在市场实现长期均衡时,市场均衡数量Q=600,单个厂商的均衡产量Q=6,于是,行业长期均衡时的厂商数量=600÷6=100(家)。2010级旅游管理班学习资料集学习委员:丁力103、已知某完全竞争的成本递增行业的长期供给函数LS=5500+300P。试求:(1)当市场需求函数D=8000-200P时,市场的长期均衡价格和均衡产量;(2)当市场需求增加,市场需求函数为D=10000-200P时,市场长期均衡加工和均衡产量;(3)比较(1)、(2),说明市场需求变动对成本递增行业的长期均衡价格个均衡产量的影响。解答:(1)在完全竞争市场长期均衡时有LS=D,既有:5500+300P=8000-200P解得Pe=5,以Pe=5代入LS函数,得:Qe=5500+300×5=7000或者,以Pe=5代入D函数,得:Qe=8000-200*5=7000所以,市场的长期均衡价格和均衡数量分别为Pe=5,Qe=7000。(2)同理,根据LS=D
本文标题:微观经济学课后答案—高鸿业-副本
链接地址:https://www.777doc.com/doc-2471448 .html