您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 沪科版2016九年级数学上册期末试卷及答案
九年级数学上册测试卷一、选择题(本大题共10小题,每小题4分,共40分)1.抛物线2)2(xy的顶点坐标是()A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)2.若(2,5)、(4,5)是抛物线cbxaxy2上的两个点,则它的对称轴是()A.5xB.1xC.2xD.3x3.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+4x+5B.y=x2+4x+3C.y=x2-4x+3D.y=x2-4x+54.已知△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,且c=3b,则cosA等于()A.31B.32C.332D.3105.在Rt△ABC中,∠C=90°,若sinA=23,则tanB=()A.53B.53C.255D.526.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有()A.4个B.3个C.2个D.1个7.如图,F是平行四边形ABCD对角线BD上的点,BF∶FD=1∶3,则BE∶EC=()A.1∶2B.1∶3C.2∶3D.1∶48.如图:点P是△ABC边AB上一点(AB>AC),下列条件不一定能使△ACP∽△ABC的是()A.∠ACP=∠BB.∠APC=∠ACBC.ACAPABACD.ABACBCPC(第6题图)(第7题图)(第8题图)9.如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O点,若AODS∶OCDS=1∶2,则AODS∶BOCS=()A.61B.31C.41D.6610.已知二次函数2yaxbxc的图象如图所示,有以下结论:①0abc;②1abc;③0abc;④420abc;⑤1ca.AEDCBO其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤(第9题图)(第10题图)二、填空题(本大题共4小题,每小题5分,共20分)11.已知为锐角,sin(090)=32,则cos=.12.已知432cba,则cbacba2332.13.△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应的点的坐标为:.14.如图,点A、B是双曲线3yx上的点,分别经过A、B两点向x轴、y轴作垂线段,若1阴影S,则12SS三、(本题共2小题,每小题8分,满分16分)15.一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗?16.如图,一块三角形的铁皮,BC边为4m,BC边上的高AD为3m,要将它加工成一块矩形铁皮,使矩形的一边FG在BC上,其余两个顶点E,H分别在AB,AC上,且矩形的面积是三角形面积的一半,求这个矩形的长和宽.四、(本题共2小题,每小题8分,满分16分)17.已知抛物线4212xxy,(1)用配方法确定它的顶点坐标、对称轴;111OxyxyABO1S2S(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?18.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?五、(本题共2小题,每小题10分,满分20分)19.会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度.20.如图,已知反比例函数xy1的图像上有一点P,过点P分别作x轴和y轴的垂线,垂足分别为A、B,使四边形OAPB为正方形.又在反比例函数的图像上有一点P1,过点P1分别作BP和y轴的垂线,垂足分别为A1、B1,使四边形BA1P1B1为正方形,求点P和点P1的坐标.六、(本题满分12分)21.如图,某居民小区内AB,两楼之间的距离30MN米,两楼的高都是20米,A楼在B楼正南,B楼窗户朝南.B楼内一楼住户的窗台离小区地面的距离2DN米,窗户高1.8CD米.当正午时刻太阳光线与地面成30角时,A楼的影子是否影响B楼的一楼住户采光?若影响,挡住该住户窗户多高?OxyABC若不影响,请说明理由.(参考数据:21.414,31.732,52.236)七、(本题满分12分)22.如图,在直角梯形ABCD中,∠B=090,AD∥BC,且AB=7,AD=2,BC=3,如果边AB上的点P使得以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,那么这样的点P有几个?请说明理由并分别求出AP的长.八、(本题满分14分)23.在平面直角坐标系xOy中,定义直线yaxb为抛物线2yaxbx的特征直线,C,ab()为其特征点.设抛物线2yaxbx与其特征直线交于A、B两点(点A在点B的左侧).(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为;(2)若抛物线2yaxbx如图所示,请在所给图中标出点A、点B的位置;(3)设抛物线2yaxbx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.①若特征点C为直线4yx上一点,求点D及点C的坐标;②若1tan22ODE,则b的取值范围是.A楼B楼CDMN九年级数学上册测试卷答案一、选择题(本大题共10小题,每小题4分,共40分)1.A2.D3.B4.A5.D6.B7.A8.D9.C10.C二、填空题(本大题共4小题,每小题5分,共20分)11.32;12.413;13.),,(232)232( ,;14.4.三、(本题共2小题,每小题8分,满分16分)15.能.旗杆的高度为6.0m.16.长为2m,宽为23m.四、(本题共2小题,每小题8分,满分16分)17.(1)4212xxy=)82(212xx=9)1(212x=29)1(212x.∴它的顶点坐标为(-1,29),对称轴为直线1x.(2)当x>-1时,y随x增大而减小(3)当0y时,即029)1(212x解得21x,42x.∴-4<x<2时,抛物线在x轴上方.18.解:(1)设所求函数的解析式为2axy.由题意,得函数图象经过点B(3,-5),∴-5=9a.∴95a.∴所求的二次函数的解析式为295xy.x的取值范围是33x.(2)当车宽8.2米时,此时CN为4.1米,对454998.94.1952y,EN长为4549,车高45451米,∵45454549,∴农用货车能够通过此隧道.五、(本题共2小题,每小题10分,满分20分)19.设AB=x,利用等量关系BC-BD=DC,列方程可求解.即2tan30tan45xx,解这个方程,得31x.20.点P的坐标是(1,1),点P1的坐标是)215,215(.六、(本题满分12分)21.如图,设光线FE影响到B楼的E处,作EGFM⊥于G,由题知,30mEGMN,30FEG,则330tan303010317.323FG,则2017.322.68MGFMGF,因为21.8DNCD,,所以2.6820.68ED,即A楼影子影响到B楼一楼采光,挡住该户窗户0.68米.七、(本题满分12分)22.这样的点P有3个.当ΔPAD∽ΔPBC时,AP=514,当ΔPAD∽ΔCBP时,AP=1或6.八、(本题满分14分)23.解:(1)∵△ECF的面积与四边形EABF的面积相等,∴S△ECF:S△ACB=1:2.又∵EF∥AB∴△ECF∽△ACB,∴,21)(2CACESSACBECF且AC=4,∴CE=22.(2)设CE的长为x,∵△ECF∽△ACB,∴CBCFCACE,∴CF=x43.由△ECF的周长与四边形EABF的周长相等,得xEFx43=EFxx)433(5)4(解得724x,∴CE的长为724.A楼B楼CEDGMNF30m30
本文标题:沪科版2016九年级数学上册期末试卷及答案
链接地址:https://www.777doc.com/doc-2479484 .html