您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 广东省汕尾市2014年中考数学试题(word版,含答案)
第1页共10页2014年汕尾市市初中毕业生学业考试数学试题一、选择题1.2的倒数是()A.2B.21C.21D.12.下列电视台的台标,是中心对称图形的是()A.B.C.D.3.若yx,则下列式子中错误..的是()A.33yxB.33yxC.33yxD.yx334.在我国南海某海域探明可燃冰储量约有194亿立方米.数字19400000000用科学记数法表示正确的是()A.101094.1B.1010194.0C.9104.19D.91094.15.下列各式计算正确的是()A.222)(babaB.32aaaC.428aaaD.532aaa6.如图,能判定ACEB//的条件是()[来源:Z#xx#k.Com]A.ABECB.EBDAC.ABCCD.ABEA7.在RtABC中,90C,若53sinA,则Bcos的值是()A.54B.53C.43D.348.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()第2页共10页9.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦10.已知直线bkxy,若5bk,6kb,那么该直线不经过...()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题11.4的平方根是12.已知4ba,3ba,则22ba13.已知cba,,为平面内三条不同直线,若ba,bc,则a与c的位置关系是14.小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为,平均数为15.写出一个在三视图中俯视图与主视图完全相同的几何体16.如图,把ABC绕点C按顺时针方向旋转35,得到CBA,BA交AC于点D,若90DCA,则A°.三、解答题17.计算:1021|30sin1|2)2(.[来源:Zxxk.Com]第3页共10页18.已知反比例函数xky的图象经过点M(2,1).(1)求该函数的表达式;(2)当42x时,求y的取值范围.(直接写出结果)[来源:学科网]19.如图,在RtABC中,90B,分别以点A、C为圆心,大于AC21长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1)求ADE;(直接写出结果)(2)当AB=3,AC=5时,求ABE的周长.第4页共10页四、解答题20、如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.21.一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.[来源:学科网]第5页共10页22.已知关于x的方程022aaxx.(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.五、解答题23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过...8万元,至少应安排甲队工作多少天?第6页共10页24.如图,在RtABC中,90ACB,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BABDBC2;(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.第7页共10页25.如图,已知抛物线343832xxy与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.2014年广东省汕尾市中考数学试卷参考答案第8页共10页一、选择题(共10小题,每小题4分,共40分)[来源:学。科。网]1.C.2.A3.D4.A5.B6.D7.B8.C9.D10.A二、填空题(共6小题,每小题5分,共30分)11.±2.12.12.13.平行.14.6,6.15.球或正方体.16.55°.三、解答题(一)(共3小题,每小题7分,共21分)17.解:原式=1﹣2×+2=1﹣1+2=2.18.解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.19.解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.四、解答题(二)(共3小题,每小题9分,共27分)20.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.21.解:(1)画树状图得:第9页共10页则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.22.解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.五、解答题(三)(共3小题,第23、24小题各11分,第25小题10分,共32分)23.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.24.证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°∴Rt△ABC为等腰直角三角形.点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等知识点.试题着重对基础知识的考查,难度不大.25.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);第10页共10页(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).
本文标题:广东省汕尾市2014年中考数学试题(word版,含答案)
链接地址:https://www.777doc.com/doc-2496369 .html