您好,欢迎访问三七文档
第三章提高综合性实验187实验26光速的测量光在真空中的传播速度是一个极其重要的基本物理常量,许多物理概念和物理量都与它有密切的联系.光速值的精确测量将关系到许多物理量值精确度的提高,例如光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数和第二辐射常数,质子、中子、电子、μ子等基本粒子的质量等常数都与光速c相关,所以长期以来对光速的测量一直是物理学家十分重视的课题.尤其是近几十年来天文测量、地球物理、空间技术的发展以及计量工作的需要,使得光速的精确测量变得越来越重要.1975年第十五届国际计量大会提出真空中光速为c=299792.458±0.001km/s.1983年,国际计量局召开的第七次单位咨询委员会和第八次单位咨询委员会决定,以光在真空中1/299792458s的时间间隔内所传播的距离为长度单位(m).这样光速的精确值被定义为c=299792.458km/s.依据信号光源与观察者是否在同一星球上,可将测定光速的实验分为天文学方法和实验室方法.例如,罗默从观察木星蚀和布拉雷从观察光程差测出了光的速度,都是使用了天文学方法.在实验室方法中,对光所通过的路程长度,或根据已标定的测量基点间的距离算出,或用大地测量的方法作直接测量.而对光通过该段距离所用的时间,是采用施予信号光源使之周期变化的频率来求得的,比较经典的实验方法有斐索齿轮法、傅科旋转镜法、迈克耳逊旋转棱镜法和克尔盒法.近代测量光速的方法都是在这些方法上采用现代高科技而发展起来的.本实验采用差频相位法测量激光在空气中的传播速度.【实验目的】1.学习用相位法测量光在空气中的传播速度.2.学习用示波器测相位差.3.了解光强调制的原理和基本技术.【实验原理】波动理念告诉我们,任何波的波长是一个周期内波传播的距离,波的频率是1秒钟内发生了多少次周期振动,因此波速是波长与频率的乘积.光是电磁波,光速为fc(26-1)可见光的频率高达1014Hz(波长400~700nm),直接测量光的频率和波长是不可能的.下面将会看到,我们将激光的光强度进行调制,从而测量低频的调制波的波长和频率(实际上是测量相位).第三章提高综合性实验1881.光强调制原理波长为650nm的激光(载波),其光强度为I0,频率为f.其强度受频率为f′(本实验为100MHz)、波长为λ′的余弦波的调制,设光沿x轴方向传播,在x处光强可表达为cxtfCOSmII210(26-2)式中,m为调制度,cos2πf′(t-x/c)表示光在测线上传播的过程中,其强度的变化犹如一个频率为f′的余弦波以光速c沿x方向传播,我们称这个波为调制波.调制波在传播过程中其相位是以2π为周期变化的.设测线上的两点A和B的位置坐标分别为x1和x2,当这两点之间的距离为调制波波长λ′的整数倍时,该两点间的相位差为nxx221212(26-3)式中,n为整数.反过来,如果我们能在光的传播路径中找到调制波的等相位点,并准确测量它们之间的距离,那么这段距离一定是波长的整数倍.如图26-1(a)所示,设调制波由A点出发,经图26-1测量光强调制波相位时间t后传播到A′点,AA′之间的距离为2D,则A′点相对于A点的相移为φ=2πft.然而用一台测相系统仪对AA′间的这个相移量进行直接测量是不可能的.为了解决为个问题,较方便的方法是在AA′的中点B设置一个反射器,由A点发出的调制波经反射镜反射返回A点,如图26-1(b)所示.显见,光线由A→B→A所走过的光程亦为2D,而且在A点,反射波的相位落后φ=2πft.如果我们以发射波作为参考信号(以下简称基准信号),将它与反射信号(以下称为被测信号)分别输入到相位计的两个输入端,则由相位计可以直接读出基准信号和被测信号之间的相位差.当反射镜相对于B点的位置前后移动半个波长时,这个相位差的数值改变2π.因此只要前后移动反射镜,相继找到在相位计中读数相同的两点,该两点之间的距离即为半个波长.如果能测定调制波的波长,由fc(26-4)可以获得光速值.2.差频法测量相位原理在实际测量相位的过程中,当信号频率很高时,测相系统的稳定性、工作速度以及电路分布参数造成的附加相移等因素都会直接影响测量精度,对电路的制造工艺要求也较苛刻,因此高频下测相位困难较大.例如,BX21型数字式相位计检相双稳电路的开关时间是40ns左右,如果所输入的被测信号频率为100MHz,则信号周期T=1/f=10ns,比电路的开关时间要短,可以想象,此时电路根本来不及动作.为使电路正常工作,就必须大大提高工作速度.为了避免高频下测相位的困难,人们通常采用差频的办法,把待测高频信号转化为中、低频信号处理.这样做的好处是易于理解的,因为两信号之间相位差的测量实际上被转化为两信第三章提高综合性实验189号过零的时间差,而降低信号频率则意味着拉长了与待测的相位差相对应的时间差.下面证明差频前后两信号之间的相位差保持不变.我们知道,将两频率不同的余弦波同时作用于一个非线性元件(如二极管、三极管)时,其输出端包含有两个信号器的差频成分.非线性元件对输入信号的响应可以表示为y(x)=A0+A1·x+A2·x2+…(26-5)忽略上式中的高次项,我们将看到二次项产生混频效应.设基准高频信号(实际为光强调制信号的发射波)为u1=U10cos(ωt+0)(26-6)被测高频信号(实际为光强调制信号的反射波)为u2=U20cos(ωt+0+)(26-7)现在我们引入一个本振高频信号u′=U0′cos(ω′t+0′)(26-8)式中,0为基准高频信号的初相位,0′为本振高频信号的初相位,为波在测线上往返一次产生的相移量.将式(26-7)、式(26-8)代入式(26-5)有下式(略去高次项):y(u2+u′)≈A0+A1·u2+A1·u′+A2·u22+A2·u′2+2A2·u2·u′(26-9)展开交叉项,有2A2·u2·u′=2A2·U20·U0′cos(ωt+0+)·cos(ω′t+0′)=A2·U20·U0′·{cos[(ω+ω′)t+(0+0′)+]+cos[(ω-ω′)t+(0-0′)+]}(26-10)由上面推导可以看出,当两个不同频率的余弦信号器同时作用于一个非线性元件时,在其输出端除了可以得到原来两种频率的基波信号以及它们的二次和高次谐波之外,还可以得到和频以及差频信号,其中差频信号很容易和其他的高频成分或直流成分分开.被测信号与本振信号混频后所得差频信号为A2·U20·U0′·cos[(ω-ω′)t+(0-0′)+](26-11)同样的推导,基准高频信号与本振高频信号混频,其差频项为A2·U10·U0′·cos[(ω-ω′)t+(0-0′)](26-12)比较以上两式可见,当基准信号、被测信号分别与本振信号混频后,所得到的两个差频信号之间的相位差仍保持为混频前的不变.图262仪器方框图第三章提高综合性实验190本实验就是利用差频检相的方法,将100MHz的高频基准信号和高频被测信号分别与本机振荡器产生的高频振荡信号混频,得到两个频率为455kHz、相位差依然为的低频信号,然后送到示波器中去测相.仪器方框图如图26-2所示,图中的混频Ⅰ用以获得低频基准信号(以下简称基准信号),混频Ⅱ用以获得低频被测信号(以下简称被测信号).使用双踪示波器可以同时显示两个差频信号.3.测量光速原理由前面的讨论可知,我们实际上已经把测量激光光速转化为测量光强调制波(100MHz)的光速.这里关键在于测量调制波的波长.当用示波器接收和显示“发射调制波”和“接收调制波”经过与本振波混频后的两个差频信号(455kHz)时,这两个差频信号的相位差前面已经讨论过,就等于“发射调制波”和“接收调制波”没有与本振波混频前的相位差.如图26-3所示,当移动反射镜时,“发射调制波”和“接收调制波”之间的相位差也在改变,相应地示波器接收和显示的两个差频信号器的相位差也要改变.若反射镜移动D,相移量为,则有D22(26-13)D4图26-3根据相移量与反射镜距离之间的关系测量光速所以测量出反射镜移动的距离D与相应的相移φ,就可以计算出波长,从而计算出光速.【实验仪器】1.光学电路箱2.带刻度尺燕尾导轨3.带游标反射棱镜小车图26-4LM2000AI型光速测量仪实验仪器设备如图26-4所示.由光速仪(有电器盒、收发透镜组、棱镜小车、带标尺导轨等)和双踪示波器组成.第三章提高综合性实验1911.电器盒如图26-5所示,电器盒采用整体结构,稳定可靠,端面安装有收发透镜组,内置收、发电子线路板.侧面有两排Q9插座,Q9插座输出的是将收、发余弦波信号经整形后的方波信号,为的是便于用示波器来测量相位差.1、2.发送基准信号3.调制信号输入4.测量频率5、6.接收测相信号7.接收信号电平图26-5电器盒2.棱镜小车棱镜小车上有供调节棱镜左右转动和俯仰的两只调节把手.由直角棱镜的入射光与出射光的相互关系可以知道,其实左右调节时对光线的出射方向不起什么作用,在仪器上加此左右调节装置,只是为了加深对直角棱镜转向特性的理解.在棱镜小车上有一只游标,使用方法与游标卡尺相同,通过游标卡尺可以读至0.1mm.3.光源和光学发射系统采用GaAs发光二极管作为光源.这是一种半导体光源,当发光二极管上注入一定的电流时,在PN结两侧的P区和N区分别有电子和空穴注入,这些非平衡载流子在复合过程中将发射波长为650nm的光,此即上文所说的载波.用机内主控振荡器产生的100MHz余弦振荡电压信号控制加在发光二极管上的注入电流.当信号电压升高时,注入电流增大,电子和空穴复合的机会增加而发出较强的光;当信号电压下降时,注入电流减小,复合过程减弱,所发出的光强度也相应减弱.用这种方法实现对光强的直接调制.图26-6是发射、接收光学系统的原理图.发光管的发光点S位于物镜L1的焦点上.图26-6接收、发射光学系统原理图4.光学接收系统用硅光电二极管作为光电转换元件,该光电二极管的光敏面位于接收物镜L2的R上,见图26-6.光电二极管所产生的光电流的大小随载波的强度而变化,因此在负载上可以得到与调制波频率相同的电压信号,即被测信号.被测信号的相位对于基准信号落后了=ωt,t第三章提高综合性实验192为往返一个测程所用的时间.5.双踪示波器可以同时显示两个差频信号的波形,并可以直接读出两个信号的相位差.双踪分别代表差频后的低频基准信号和低频被测信号.将“参考”相位信号接至CH1通道输入端,“信号”相位信号接至CH2通道,并用CH1通道触发扫描,显示方式为“DUAL”.【实验内容与步骤】1.实验准备(1)仪器预热电子仪器都有一个温漂问题,光速仪和频率计须预热半小时再进行测量.在这期间可以进行线路连接、光路调整、示波器调整和定标等工作.(2)光路调整先把棱镜小车移近收发透镜处,用一小纸片挡在接收物镜管前,观察光斑位置是否居中.调节棱镜小车上的把手,使光斑尽可能居中,将小车移至最远端,观察光斑位置有无变化,并作相应调整,达到小车前后移动时光斑位置变化最小.2.等距法测量光速(1)基准信号(方波)输入到CH1,被测信号(方波)输入到CH2,并用CH1通道触发扫描.(2)将棱镜小车(反射镜)移动到3.00cm处,选择波形上与示波器屏幕上横轴相交的点,记下两信号在示波器横轴上的相位差(小格).(3)迅速将棱镜小车移动到12.00cm处,很快读出两波形在示波器上的相位差Δ.(4)分别取小车移动距离为21.00cm,30.00cm,39.00cm,48.00cm(小车的初始位置均为3.00cm),重复2,3步骤,测量相位差Δ.(5)类似(4),小车由48.00cm移至3.00cm处,测量相位差Δ′.3.等相位法测量光速(1)调节示波器,观察被测信号,把扫描扩展开关按钮按下去,要求使半个波长占40~50小格.(2)移动棱镜小车,使棱镜小车位于导轨的
本文标题:实验26光速的测量
链接地址:https://www.777doc.com/doc-2500111 .html