您好,欢迎访问三七文档
小学数学知识点整理(数和数的运算概念)文章来源莲山课件(一)整数1整数的意义自然数和0都是整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111……0.5656……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222……0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777……简写作0.5302302……简写作。(三)分数1分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用%来表示。百分号是表示百分数的符号。小学数学知识点整理(基本定义与运算定律)奇数与偶数:凡是能被2整除的数叫偶数(0也是偶数),反之,不能被2整除的数叫奇数。质数(素数)与合数:一个数,如果只有1和它本身两个因数,这样的数叫做质数,也叫素数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。由于1的因数只有1个,所以1既不是质数,也不是合数。公因数:几个数公有的因数,叫做公因数。它的个数是有限的,既有最大的,也有最小的。互质数:两个数的公因数只有1,而没有其他公因数的,这两个数就叫互质数。质数与互质数:两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。分解质因数:把一个合数分解成几个质数相乘的形式,就叫做分解质因数。公倍数:几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。最大公因数:几个数公有的因数中,最大的一个就叫做这几个数的最大公因数。最小公倍数:几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。能被2整除的判断方法:一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。能被5整除的判断方法:一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。能被3整除的判断方法:一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫这个分数的分数单位(带分数要化成假分数)。分数化有限小数的判断方法:一个分数能否化成有限小数,主要看分母(这里的分数一定是最简分数)是不是只有质因数“2或5”。掺杂任何其他质因数,都不能化成有限小数,反之,就一定能化成有限小数。分数的基本性质:一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫分数的基本性质。分数的通分、约分通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。约分:把一个分数化成同它相等的,但分子和分母都比较小的分数,叫做约分。最简分数:分子和分母只有公因数1,这样的分数叫做最简分数。分数计算到最后,得数必须化成最简分数。分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减,。分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。方程式:含有未知数的等式叫方程式。准确数与近似数(近似值):与实际情况完全符合的数,叫做准确数。与实际情况接近而有一定误差的数,叫做近似数(或叫近似值)。公历年的平年、闰年平年:把公历年份除以4(这里不是整百的公历年份)有余数时,就把这一年叫做平年,全年365天。其中二月份有28天。闰年:把公历年份除以4(这里不是整百的公历年份)余数为零时,就把这一年叫做闰年,全年366天。其中二月份有29天。如果年份是整百的,则除以400,再看余数。时刻与时间:时刻表示一天内某一个特指的时候,例如上午8时30分开会,这里的“8时30分”这是时刻。时间表示两个时期或两个时刻的间隔。例如,做作业用去30分钟,这里的“30分钟”就是时间。直线:没有端点,可以向两端无限延长。射线:只有一个端点,可以向一端无限延长。线段:有两个端点。射线和线段都是直线的一部分。两点之间,线段最短。垂线、垂足:两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。角:锐角(小于90的角)、直角(等于90的角)、钝角(大于90而小于180的角)、平角(等于180的角)、周角(等于360的角)平行线:在同一平面内的两条不相交的直线,叫做平行线。面积:物体的表面或者平面图形的大小。体积:物体所占空间的大小,叫做体积。容积:一个容器所能容纳物体的体积,叫做容积或容量。数量关系计算公式1、加数+加数=和一个加数=和-另一个加数2、被减数-减数=差减数=被减数-差被减数=减数+差3、因数×因数=积一个因数=积÷另一个因数4、被除数÷除数=商除数=被除数÷商被除数=商×除数5、有余数的除法:被除数=商×除数+余数除数=(被除数-余数)÷商6、单价×数量=总价总价÷单价=数量总价÷数量=单价7、单产量×数量=总产量8、速度×时间=路程路程÷速度=时间路程÷时间=速度9、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率10、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数公因数、公倍数问题:运用最大公因数或最小公倍数解答应用题,叫做公因数、公倍数问题。例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?分析:2.5=
本文标题:小学数学知识点整理
链接地址:https://www.777doc.com/doc-2505680 .html