您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 基于DSP的A,D转换接口设计
河南理工大学数字信号处理课程设计题目:基于DSP的A/D转换接口设计摘要数字信号处理器(digitalsignalprocessor,DSP)是针对数字信号处理的需求而设计的一种可编程的处理器,是现代电子技术、计算机技术和信号处理技术相结合的产物。随着信息处理技术的飞速发展,DSP在电子信息、通信、软件无线电、自动控制、仪器仪表、信息家电等高科技领域获得了越来越广泛的应用。自从20世纪80年代诞生以来,DSP就被广泛应用于社会各个领域。DSP不仅快速实现了各种数字信号处理算法,而且拓宽了数字信号处理的应用范围。随着DSP的功能越来越强大,其应用范围也将越来越广泛。此次DSP课程设计,我们一组做的是A/D转换接口的设计。在DSP的外部设备中,A/D(模数转换器)是一个十分重要的器件,A/D先将模拟信号转换成数字信号,DSP接收A/D输出的数字信号进行信号处理。关键词:DSP;A/D转换接口;TMS320C5416目录摘要·········································································································11概述····································································································31.1DSP芯片的介绍································································································31.2DSP芯片的发展································································································31.3DSP芯片的特点································································································41.4PROTEL99SE概述······························································································52系统设计································································································62.1电路原理图········································································································72.2PCB板············································································································73硬件设计································································································83.1电源设计···········································································································83.2DSP与TLV1571的硬件连接··················································································83.3其他引脚和测试信号····························································································94软件设计······························································································104.1A/D主程序······································································································104.2中断程序·········································································································124.3CMD程序········································································································155实验结果······························································································16总结·····································································································17参考文献···········································································错误!未定义书签。1概述1.1DSP芯片的介绍DSP芯片,也称数字信号处理器,是一种具有特殊结构的微处理器。DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP指令,可以用来快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下的一些主要特点:1在一个指令周期内可完成一次乘法和一次加法。程序和数据空间分开,可以同时访问指令和数据。2片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问。3具有低开销或无开销循环及跳转的硬件支持。4快速的中断处理和硬件I/O支持。5具有在单周期内操作的多个硬件地址产生器。6可以并行执行多个操作。7支持流水线操作,使取指、译码和执行等操作可以重叠执行。1.2DSP芯片的发展世界上第一个单片DSP芯片是1978年AMI公司宣布的S2811,1979年美国Iintel公司发布的商用可编程期间2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须的单周期芯片。1980年。日本NEC公司推出的μPD7720是第一个具有乘法器的商用DSP芯片。第一个采用CMOS工艺生产浮点DSP芯片的是日本的Hitachi公司,它于1982年推出了浮点DSP芯片。1983年,日本的Fujitsu公司推出的MB8764,其指令周期为120ns,且具有双内部总线,从而处理的吞吐量发生了一个大的飞跃。而第一个高性能的浮点DSP芯片应是AT&T公司于1984年推出的DSP32。在这么多的DSP芯片种类中,最成功的是美国德克萨斯仪器公司(TexasInstruments,简称TI)的一系列产品。TI公司灾982年成功推出启迪一代DSP芯片TMS32010及其系列产品TMS32011、TMS32C10/C14/C15/C16/C17等,之后相继推出了第二代DSP芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS32C30/C31/C32,第四代DSP芯片TMS32C40/C44,第五代DSP芯片TMS32C50/C51/C52/C53以及集多个DSP于一体的高性能DSP芯片TMS32C80/C82等。自1980年以来,DSP芯片得到了突飞猛进的发展,DSP芯片的应用越来越广泛。从运算速度来看,MAC(一次乘法和一次加法)时间已经从80年代初的400ns(如TMS32010)降低到40ns(如TMS32C40),处理能力提高了10多倍。DSP芯片内部关键的乘法器部件从1980年的占模区的40左右下降到5以下,片内RAM增加一个数量级以上。从制造工艺来看,1980年采用4μ的N沟道MOS工艺,而现在则普遍采用亚微米CMOS工艺。DSP芯片的引脚数量从1980年的最多64个增加到现在的200个以上,引脚数量的增加,意味着结构灵活性的增加。此外,DSP芯片的发展,是DSP系统的成本、体积、重量和功耗都有很大程度的下降。1.3DSP芯片的特点DSP具有如下一些特点。(1)改进的哈佛结构早期的微处理器内部大多采用冯•诺依曼(VonNeumann)结构,其片内程序空间和数据空间是混合在一起的,取指令和取操作是一条总线分时进行的。当高速运算时,不但不能同时取指令和取操作数,而且还会造成传输通道上的瓶颈现象。而DSP内部采用的是程序空间和数据空间分开的哈佛结构,允许同时取指令(来自程序存储器)和取操作数,而且还允许在程序空间和数据空间之间互相传送数据,即改进的哈佛结构。(2)多总线结构许多DSP芯片内部都采用多总线结构,这样可以保证在一个机器周期内多次访问程序空间和数据空间。(3)流水线操作许多DSP芯片内部都采用多总线结构,这样可以保证在一个机器周期内可以多次访问程序空间和数据空间。(4)多处理单元DSP内部一般都包括多个处理单元,如算术逻辑单元(ALU),辅助寄存器运算单元(ARAU),累加器(ACC),硬件乘法器(MUL)等。它们可以在一个指令周期内同时进行运算。(5)特殊的DSP指令为了更好地满足数字信号处理应用的需求,在DSP的指令系统中,设计了一些特殊的DSP指令。(6)指令周期短早期的DSP指令周期约为400ns,采用4μm的NMOS制造工艺,其运算速度为5MIPS。随着集成电路工艺的发展,DSP广泛采用了亚微米静态CMOS制造工艺,其运行速度越来越快。(7)运算精度高早期DSP的字长是8位,后来逐步提高到16位、24位、32位,为防止运算过程中产生溢出,有的DSP的累加器字长是40位。1.4Protel99SE概述Protel99SE主要由原理图设计系统、印制电路板设计系统两大部分组成。(1)原理图设计系统这是一个易于使用的具有大量元件库的原理图编辑器,主要用于原理图的设计。它可以为印制电路板设计提供网络表。该编辑器除了具有强大的原理图编辑功能以外,其分层组织设计功能、设计同步器、丰富的电气设计检验功能及强大而完善的打印输出功能,使用户可以轻松完成所需的设计任务。(2)印制电路板设计系统它是一个功能强大的印制电路板设计编辑器,具有非常专业的交互式布线及元件布局的特点,用于印制电路板(PCB)的设计并最终产生PCB文件,直接关系到印制电路板的生产。Protel99SE的印制电路板设计系统可进行多达32层信号层、16层内部电源/接地层的布线设计,交互式的元件布置工具极大地减少了印制板设计的时间。同时它还包含一个具有专业水准的PCB信号完整性分析工具、功能强大的打印管理系统、一个先进的PCB三维视图预览工具。此外Protel99SE还包含一个功能强大的基于SPICE3f5的模/数混合信号仿真器,使设计者可以方便地在设计中对一组混合信号进行仿真分析。同时,它还提供了一个高效、通用的可编程逻辑器件设计工具。2系统设计2.1电路原理图图2-1A/D转换接口原理图2.2PCB板图2-2A/D转换接口PCB板3硬件设计
本文标题:基于DSP的A,D转换接口设计
链接地址:https://www.777doc.com/doc-2533632 .html