您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 基于用户的协同过滤推荐算法原理和实现
基于用户的协同过滤推荐算法原理和实现在推荐系统众多方法中,基于用户的协同过滤推荐算法是最早诞生的,原理也较为简单。该算法1992年提出并用于邮件过滤系统,两年后1994年被GroupLens用于新闻过滤。一直到2000年,该算法都是推荐系统领域最著名的算法。本文简单介绍基于用户的协同过滤算法思想以及原理,最后基于该算法实现园友的推荐,即根据你关注的人,为你推荐博客园中其他你有可能感兴趣的人。基本思想俗话说“物以类聚、人以群分”,拿看电影这个例子来说,如果你喜欢《蝙蝠侠》、《碟中谍》、《星际穿越》、《源代码》等电影,另外有个人也都喜欢这些电影,而且他还喜欢《钢铁侠》,则很有可能你也喜欢《钢铁侠》这部电影。所以说,当一个用户A需要个性化推荐时,可以先找到和他兴趣相似的用户群体G,然后把G喜欢的、并且A没有听说过的物品推荐给A,这就是基于用户的系统过滤算法。原理根据上述基本原理,我们可以将基于用户的协同过滤推荐算法拆分为两个步骤:1.找到与目标用户兴趣相似的用户集合2.找到这个集合中用户喜欢的、并且目标用户没有听说过的物品推荐给目标用户1.发现兴趣相似的用户通常用Jaccard公式或者余弦相似度计算两个用户之间的相似度。设N(u)为用户u喜欢的物品集合,N(v)为用户v喜欢的物品集合,那么u和v的相似度是多少呢:Jaccard公式:余弦相似度:假设目前共有4个用户:A、B、C、D;共有5个物品:a、b、c、d、e。用户与物品的关系(用户喜欢物品)如下图所示:如何一下子计算所有用户之间的相似度呢?为计算方便,通常首先需要建立“物品—用户”的倒排表,如下图所示:然后对于每个物品,喜欢他的用户,两两之间相同物品加1。例如喜欢物品a的用户有A和B,那么在矩阵中他们两两加1。如下图所示:计算用户两两之间的相似度,上面的矩阵仅仅代表的是公式的分子部分。以余弦相似度为例,对上图进行进一步计算:到此,计算用户相似度就大功告成,可以很直观的找到与目标用户兴趣较相似的用户。2.推荐物品首先需要从矩阵中找出与目标用户u最相似的K个用户,用集合S(u,K)表示,将S中用户喜欢的物品全部提取出来,并去除u已经喜欢的物品。对于每个候选物品i,用户u对它感兴趣的程度用如下公式计算:其中rvi表示用户v对i的喜欢程度,在本例中都是为1,在一些需要用户给予评分的推荐系统中,则要代入用户评分。举个例子,假设我们要给A推荐物品,选取K=3个相似用户,相似用户则是:B、C、D,那么他们喜欢过并且A没有喜欢过的物品有:c、e,那么分别计算p(A,c)和p(A,e):看样子用户A对c和e的喜欢程度可能是一样的,在真实的推荐系统中,只要按得分排序,取前几个物品就可以了。
本文标题:基于用户的协同过滤推荐算法原理和实现
链接地址:https://www.777doc.com/doc-2536994 .html