您好,欢迎访问三七文档
第二章导数与微分一、导数定义名称定义记号函数)x(f在ox点可导设函数)x(f在)x(Uo点有定义x)x(f)xx(flimxylim000x0x,)b,a()xx(0存在,则)x(f在0x点可导(或00xxxx)x(f)x(flim0存在))x(f0x)x(f)xx(flim000x函数)x(f在)b,a(上可导若函数)x(f在)b,a(上每一点都可导,则称函数)x(f在)b,a(上可导函数)x(f在ox点左导数若极限x)x(f)xx(flim000x存在,则其为)x(f在0x点的左导数(或00xxxx)x(f)x(flim0存在))x(f0x)x(f)xx(flim000x函数)x(f在ox点右导数若极限x)x(f)xx(flim000x存在,则其为)x(f在0x点的右导数(或00xxxx)x(f)x(flim0存在))x(f0x)x(f)xx(flim000x函数)x(f在]b,a[上可导若函数)x(f在]b,a[上每一点都可导,区间端点的导数理解为单侧导数二、导数的几何意义几何意义切线方程法线方程导数)x(f0表示曲线)x(fy在点))x(f,x(00的切线的斜率)x(fy0)xx)(x(f00)x(fy0)xx()x(f100三、函数的求导法则法则公式或定理和差积商的求导法则设函数)x(u、)x(v在x点可导,则①vu)vu(wvu)wvu(②vuvu)vu(为常数))(C(uC)Cu(wuvwvuvwuuvw③2vvuvu)vu(,)0v(为常数)()(CvCvC2复合函数的求导设)(,而xu)u(fy,且)x(f、)x(都可导,则复合函数)]x([f可导,且dxdududy)x()u(fdxdy.反函数的求导设函数)y(x在)d,c(上单调、可导,值域为)b,a(,且0)y(,则反函数)x(fy在)b,a(处可导,且)y(1)x(f隐函数的求导若方程0)y,x(F能确定y是x的函数)x(fy,则求xy时只要0)y,x(F两边同时对x求导,再整理出)y,x(gy的形式即可。对数求导法某些函数(如幂指函数或连乘式)求导时,可先两边同时取对数,化为隐函数,再求导。(但结果要注意要回代y)参数方程的求导)t(y)t(x在),(上连续、可导,0)t(,则参数式确定的函数)]x([y1可导,且)t()t(xydxdytt,另)t())t()t((xydxydttx22。四、基本初等函数的求导公式0)C((C为常数)xcos)x(sinxtanxsec)x(sec1x)x(xsin)x(cosxcotxcsc)x(csc)1a,0a(alna)a(xxxsec)x(tan22x11)x(arctanxxe)e(xcsc)x(cot22x11)xcotarc()1a,0a(alnx1)x(loga)1x1(x11)x(arcsin2x1)x(ln)1x1(x11)x(arccos2五、高阶导数的基本公式x)n(xe)e(nnx1n1)x()()()()2naxsin(a)ax(sinn)n()2nbxcos(b)bxcos(n)n(n1n)n()x1()1n()1()]x1[ln(!1nn)n()x1(n)1()x11(!莱布尼兹公式:)()()()(knkn0kknnvuCuv,其中!kn(knCkn)!!,)x(v,)x(u有n阶导数六、微分与导数之间的关系函数在x点可微函数)x(f在x点可导,因此dx)x(fdy七、利用微分作近似计算的常用公式在oxx处,当x较小时,x)x(f)x(f)xx(fyooo在oxx处,当x较小时,x)x(f)x(f)xx(fooo在较小时,且令处xxx,0xo,x0f0fxf)()()(x1ex;x1)x1(;x)x1ln(;xxsin;xxtan。
本文标题:导数微分知识点
链接地址:https://www.777doc.com/doc-2537293 .html