您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 固体物理导论部分考前复习试题
第一章1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中原子数之比.解:设原子的半径为R,体心立方(bcc)晶胞的体对角线为4R,晶胞的边长为,晶胞的体积为,一个晶胞包含两个原子,一个原子占的体积为,单位体积晶体中的原子数为;面心立方(fcc)晶胞的边长为,晶胞的体积为,一个晶胞包含四个原子,一个原子占的体积为,单位体积晶体中的原子数为.因此,同体积的体心和面心立方晶体中的原子数之比为=0.918.2.解理面是指低指数的晶面还是高指数的晶面?为什么?解:晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大.因为面间距大的晶面族的指数低,所以解理面是面指数低的晶面.3.基矢为a1=aia2=aja3=a(i+j+k)/2的晶体为何种结构?解:有已知条件,可计算出晶体的原胞的体积由原胞的体积推断,晶体结构为体心立方.按照本章习题14,我们可以构造新的矢量,,.对应体心立方结构.根据14题可以验证,满足选作基矢的充分条件.可见基矢为,,的晶体为体心立方结构.若+,则晶体的原胞的体积,该晶体仍为体心立方结构.4.面心立方元素晶体中最小晶列周期多大?该晶列在哪些晶面内?解:周期最小的晶列一定在原子面密度最大的晶面内.若以密堆积模型,则原子面密度最大的晶面就是密排面.[l1,l2,l3]晶列上格点周期为∣Rl∣=∣l1a+l2a+l3a∣密勒指数(111)是一个密排面晶面族,最小的晶列周期为∣Rl∣=.根据同族晶面族的性质,周期最小的晶列处于{111}面内.5.在晶体衍射中,为什么不能用可见光?解:晶体中原子间距的数量级为米,要使原子晶格成为光波的衍射光栅,光波的波长应小于米.但可见光的波长为7.64.0米,是晶体中原子间距的1000倍.因此,在晶体衍射中,不能用可见光.6.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?解:对于同级衍射,高指数的晶面族衍射光弱,低指数的晶面族衍射光强.低指数的晶面族面间距大,晶面上的原子密度大,这样的晶面对射线的反射(衍射)作用强.相反,高指数的晶面族面间距小,晶面上的原子密度小,这样的晶面对射线的反射(衍射)作用弱.另外,由布拉格反射公式可知,面间距大的晶面,对应一个小的光的掠射角.面间距小的晶面,对应一个大的光的掠射角.越大,光的透射能力就越强,反射能力就越弱.7.确定fcc结构中粒子密度最大的晶面.8.温度升高时,衍射角如何变化?X光波长变化是,衍射角如何变化?解:温度升高时,由于热膨胀,面间距逐渐变大.由布拉格反射公式可知,对应同一级衍射,当X光波长不变时,面间距逐渐变大,衍射角逐渐变小.所以温度升高,衍射角变小.当温度不变,X光波长变大时,对于同一晶面族,衍射角随之变大.5.晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基矢、和重合,除O点外,OA、OB和OC上是否有格点?若ABC面的指数为(234),情况又如何?[解答]晶面族(123)截、和分别为1、2、3等份,ABC面是离原点O最近的晶面,OA的长度等于的长度,OB的长度等于的长度的1/2,OC的长度等于的长度的1/3,所以只有A点是格点.若ABC面的指数为(234)的晶面族,则A、B和C都不是格点.6.验证晶面(),()和(012)是否属于同一晶带.若是同一晶带,其带轴方向的晶列指数是什么?[解答]由习题12可知,若(),()和(012)属于同一晶带,则由它们构成的行列式的值必定为0.可以验证=0,说明(),()和(012)属于同一晶带.晶带中任两晶面的交线的方向即是带轴的方向.由习题13可知,带轴方向晶列[l1l2l3]的取值为l1==1,l2==2,l3==1.7.带轴为[001]的晶带各晶面,其面指数有何特点?[解答]带轴为[001]的晶带各晶面平行于[001]方向,即各晶面平行于晶胞坐标系的轴或原胞坐标系的轴,各晶面的面指数形为(hk0)或(h1h20),即第三个数字一定为0.8.与晶列[l1l2l3]垂直的倒格面的面指数是什么?[解答]正格子与倒格子互为倒格子.正格子晶面(h1h2h3)与倒格式h1+h2+h3垂直,则倒格晶面(l1l2l3)与正格矢l1+l2+l3正交.即晶列[l1l2l3]与倒格面(l1l2l3)垂直.9.在结晶学中,晶胞是按晶体的什么特性选取的?[解答]在结晶学中,晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.10.六角密积属何种晶系?一个晶胞包含几个原子?[解答]六角密积属六角晶系,一个晶胞(平行六面体)包含两个原子.12.面心立方元素晶体中最小的晶列周期为多大?该晶列在哪些晶面内?[解答]周期最小的晶列一定在原子面密度最大的晶面内.若以密堆积模型,则原子面密度最大的晶面就是密排面.由图1.9可知密勒指数(111)[可以证明原胞坐标系中的面指数也为(111)]是一个密排面晶面族,最小的晶列周期为.根据同族晶面族的性质,周期最小的晶列处于{111}面内.13.在晶体衍射中,为什么不能用可见光?[解答]晶体中原子间距的数量级为米,要使原子晶格成为光波的衍射光栅,光波的波长应小于米.但可见光的波长为7.64.0米,是晶体中原子间距的1000倍.因此,在晶体衍射中,不能用可见光.14.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?[解答]对于同级衍射,高指数的晶面族衍射光弱,低指数的晶面族衍射光强.低指数的晶面族面间距大,晶面上的原子密度大,这样的晶面对射线的反射(衍射)作用强.相反,高指数的晶面族面间距小,晶面上的原子密度小,这样的晶面对射线的反射(衍射)作用弱.另外,由布拉格反射公式可知,面间距大的晶面,对应一个小的光的掠射角.面间距小的晶面,对应一个大的光的掠射角.越大,光的透射能力就越强,反射能力就越弱.15.温度升高时,衍射角如何变化?X光波长变化时,衍射角如何变化?[解答]温度升高时,由于热膨胀,面间距逐渐变大.由布拉格反射公式可知,对应同一级衍射,当X光波长不变时,面间距逐渐变大,衍射角逐渐变小.所以温度升高,衍射角变小.当温度不变,X光波长变大时,对于同一晶面族,衍射角随之变大.18.金刚石和硅、锗的几何结构因子有何异同?[解答]取几何结构因子的(1.44)表达式,其中uj,vj,wj是任一个晶胞内,第j个原子的位置矢量在轴上投影的系数.金刚石和硅、锗具有相同的结构,尽管它们的大小不相同,但第j个原子的位置矢量在轴上投影的系数相同.如果认为晶胞内各个原子的散射因子都一样,则几何结构因子化为.在这种情况下金刚石和硅、锗的几何结构因子的求和部分相同.由于金刚石和硅、锗原子中的电子数和分布不同,几何结构因子中的原子散射因子不会相同.第二章1.离子键,金属键,共价键,范德瓦尔斯键和氢键中,哪些键可能形成绝缘体和半导体?哪些键具有饱和性和方向性?为什么?解:2.试证由两种离子组成的,间距为R的一维晶格的马德隆常数M=2Ln2.3.只考虑最近邻和次近邻,试计算Nacl和Cscl结构的马德隆常数.1.是否有与库仑力无关的晶体结合类型?[解答]共价结合中,电子虽然不能脱离电负性大的原子,但靠近的两个电负性大的原子可以各出一个电子,形成电子共享的形式,即这一对电子的主要活动范围处于两个原子之间,通过库仑力,把两个原子连接起来.离子晶体中,正离子与负离子的吸引力就是库仑力.金属结合中,原子实依靠原子实与电子云间的库仑力紧紧地吸引着.分子结合中,是电偶极矩把原本分离的原子结合成了晶体.电偶极矩的作用力实际就是库仑力.氢键结合中,氢先与电负性大的原子形成共价结合后,氢核与负电中心不在重合,迫使它通过库仑力再与另一个电负性大的原子结合.可见,所有晶体结合类型都与库仑力有关.2.如何理解库仑力是原子结合的动力?[解答]晶体结合中,原子间的排斥力是短程力,在原子吸引靠近的过程中,把原本分离的原子拉近的动力只能是长程力,这个长程吸引力就是库仑力.所以,库仑力是原子结合的动力.3.晶体的结合能,晶体的内能,原子间的相互作用势能有何区别?[解答]自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量,称为晶体的结合能.原子的动能与原子间的相互作用势能之和为晶体的内能.在0K时,原子还存在零点振动能.但零点振动能与原子间的相互作用势能的绝对值相比小得多.所以,在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能.4.原子间的排斥作用取决于什么原因?[解答]相邻的原子靠得很近,以至于它们内层闭合壳层的电子云发生重叠时,相邻的原子间便产生巨大排斥力.也就是说,原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.5.原子间的排斥作用和吸引作用有何关系?起主导的范围是什么?[解答]在原子由分散无规的中性原子结合成规则排列的晶体过程中,吸引力起到了主要作用.在吸引力的作用下,原子间的距离缩小到一定程度,原子间才出现排斥力.当排斥力与吸引力相等时,晶体达到稳定结合状态.可见,晶体要达到稳定结合状态,吸引力与排斥力缺一不可.设此时相邻原子间的距离为,当相邻原子间的距离时,吸引力起主导作用;当相邻原子间的距离时,排斥力起主导作用.6.共价结合为什么有“饱和性”和“方向性”?[解答]设N为一个原子的价电子数目,对于IVA、VA、VIA、VIIA族元素,价电子壳层一共有8个量子态,最多能接纳(8-N)个电子,形成(8-N)个共价键.这就是共价结合的“饱和性”.共价键的形成只在特定的方向上,这些方向是配对电子波函数的对称轴方向,在这个方向上交迭的电子云密度最大.这就是共价结合的“方向性”.7.共价结合,两原子电子云交迭产生吸引,而原子靠近时,电子云交迭会产生巨大的排斥力,如何解释?[解答]共价结合,形成共价键的配对电子,它们的自旋方向相反,这两个电子的电子云交迭使得体系的能量降低,结构稳定.但当原子靠得很近时,原子内部满壳层电子的电子云交迭,量子态相同的电子产生巨大的排斥力,使得系统的能量急剧增大.10.为什么许多金属为密积结构?[解答]金属结合中,受到最小能量原理的约束,要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大).原子实越紧凑,原子实与共有电子电子云靠得就越紧密,库仑能就越低.所以,许多金属的结构为密积结构.第三章1.长光学格波与长声学格波本质上有何区别?解:长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.2.晶体中声子数目是否守恒?声子与光子有何区别?解:频率为的格波的(平均)声子数为即每一个格波的声子数都与温度有关,因此,晶体中声子数目不守恒,它是温度的变量.按照德拜模型,晶体中的声子数目N’为.作变量代换,其中是德拜温度.高温时,,即高温时,晶体中的声子数目与温度成正比.低温时,,,即低温时,晶体中的声子数目与T3成正比.3.温度一定,光学波的声子数目多还是声学波的声子数目多?解:频率为的格波的(平均)声子数为.因为光学波的频率比声学波的频率高,()大于(),所以在温度一定情况下,一个光学波的声子数目少于一个声学波的声子数目.{7.对同一个振动模式,温度高时的声子数目多呢,还是温度低时的声子数目多?解:设温度THTL,由于()小于(),所以温度高时的声子数目多于温度低时的声子数目.8.高温时,频率为的格波的声子数目与温度有何关系?解:温度很高时,,频率为的格波的(平均)声子数为.可见高温时,格波的声子数目与温度近似成正比.}4,长声学格波能否导致离子晶体的宏观极化?解:长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移.长声学格波的特点是,原胞内所有的原子没有相对位移.因此,长声学格波不能导致离子晶
本文标题:固体物理导论部分考前复习试题
链接地址:https://www.777doc.com/doc-2594256 .html