您好,欢迎访问三七文档
1动态与变换动态几何题已成为中考试题的一大热点题型。动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等。在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。1、动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.特点:图形中的某个元素,按某种规律在运动类型:(1)点动(2)线动(3)旋转、平移(4)形变解题思路:不要被动、变迷惑,通过观察,分析,动中窥静,变化之中求不变,从而明确图形之间的内在联系,找到解题的途径。21.(2012贵州铜仁,10,4分如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑩个图形中平行四边形的个数是()A.54B.110C.19D.109【解析】仔细观察图形可得,图形①中1=1×1+0,图形②中5=2×2+1,图形③中11=3×3+2,……,依次类推,∴第⑩个图形中平行四边形的个数是10×10+9=109【解答】D.【点评】本题考查了图形的变化规律,较难.探索规律的问题是近几年数学中考的一个“热门”题型.解决这类问题的基本思路是:通过观察、分析若干特殊情形,归纳总结出一般性结论,然后验证其结论的正确性.2.(2012湖南湘潭,24,8分)如图,ABC是边长为3的等边三角形,将ABC沿直线BC向右平移,使B点与C点重合,得到DCE,连结BD,交AC于F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.【解析】用平行四边形和菱形的判断方法和性质进行推理,将ABC沿直线BC向右平移,CD∥AB,且CD=AB,则四边形ABCD是平行四边形,又有AB=BC,则四边形ABCD是菱形,菱形的对角线互相垂直平分。(2)用勾股定理或三角函数求出等边三角形的高BF=233,由菱形的性质得BD=2BF=33。【答案】(1)猜想AC与BD的位置关系是互相垂直平分,证明如:下:因ABC是等边三角形,则AB=BC=AC=3,将ABC沿直线BC向右平移后,CD∥AB,且CD=AB,则四边形ABCD是平行四边形,又有AB=BC,则四边形ABCD是菱形,菱形ABCD的对角线AC与BD互相垂直平分。10题图3(2)BC=3,CF=23,∠BFC=900,BF=22225.13CFBC=233,由菱形的性质得BD=2BF=33。【点评】本题主要考查菱形和平行四边形的性质和判断方法,对角线互相垂直平分,是菱形的性质。[来3.(2012四川内江,23,6分)如图12,已知A1,A2,A3,…An,…是x轴上的点,且OA1=A1A2=A2A3=…=An-1An…=1,分别过点A1,A2,A3,…An,…作x轴的垂线交反比例函数y=1x(x>0)的图象于点B1,B2,B3,…Bn,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2……,记△B1P1B2的面积为S1,△B2P2B3的面积为S2……,△BnPnBn+1的面积为Sn,则S1+S2+S3+…+Sn=.【解析】由OA1=A1A2=A2A3=…=An-1An…=1,可得P1B2=P2B3=P3B4=…=PnBn+1=1,以及B1(1,1),B2(2,12),B3(3,13),…,Bn(n,1n),Bn+1(n+1,11n),所以S1+S2+S3+…+Sn=12B1P1·P1B2+12B2P2·P2B3+…12BnPn·PnBn+1=12(B1P1+B2P2+…BnPn)=12(1-12+12-13+…+1n-11n)=12(1-11n)=2(1)nn.【答案】2(1)nn【点评】各地中考经常将反比例函数与三角形、矩形的面积结合在一起考查,本题属于这类问题中的较难问题.解答时需注意:1.耐心、认真阅读题意,抓住各三角形的水平直角边都等于1这一特征,从而将面积和转化为竖直直角边和的一半;2.能用解析思想表达出B1,B2,B3,…,Bn的坐标,进而表达出所有直角三角形竖直直角边的长;3.具有一定的数式规律探究能力.4.(2012•丽水)如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.yxOA1A2A3B1B2B3P1P2图124考点:反比例函数综合题。专题:代数几何综合题。分析:(1)过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式列式计算即可得解;(2)过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.解答:解:(1)过点C作CG⊥OA于点G,∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=,∴点C的坐标是(1,),由=,得:k=,∴该双曲线所表示的函数解析式为y=;(2)过点D作DH⊥AF于点H,设AH=a,则DH=a.∴点D的坐标为(4+a,),∵点D是双曲线y=上的点,由xy=,得(4+a)=,即:a2+4a-1=0,解得:a1=-2,a2=--2(舍去),∴AD=2AH=2-4,∴等边△AEF的边长是2AD=4-8.点评:本题是对反比例函数的综合考查,包括待定系数法求反比例函数解析式,等边三角形的性质,解一元二次方程,难度不大,作出辅助线,表示出点C、D的坐标是解题的关键.5.(2012黑龙江省绥化市,26,8分)已知,点E是矩形ABCD的对角线BC上的一点,5且BE=BC,AB=3,BC=4,点P为EC上的一动点,且PQ⊥BC于点Q,PR⊥BD于点R.⑴如图(甲),当点P为线段EC中点时,易证:PR+PQ=125;⑵如图(乙),当点P为线段EC上任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给与证明;若不成立,请说明理由;⑶如图(丙),当点P为线段EC延长线上任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.【解析】解:(2)图2中结论PR+PQ=125仍成立.证明:连接BP,过C点作CK⊥BD于点K.∵四边形ABCD为矩形,∴∠BCD=90°,又∵CD=AB=3,BC=4,∴BD=2222CDBC345∵S△BCD=12BC•CD=12BD•CK,即3×4=5CK,∴CK=125∵S△BCE=12BE•CK,S△BEP=12PR•BE,S△BCP=12PQ•BC,且S△BCE=S△BEP+S△BCP,∴12BE•CK=12PR•BE+12PQ•BC又∵BE=BC,∴CK=PR+PQ,∴PR+PQ=1256(3)图3中的结论是PR-PQ=125.【答案】⑵结论PR+PQ=125仍然成立,理由见解析;⑶图(丙)中的结论是PR-PQ=125.【点评】本题主要考查了矩形的性质及直角三角形的重要定理:勾股定理,解决本题的关键是掌握好矩形的性质及以图形面积的和差为平台构造出的等式关系.难度中等.6.(2012贵州省毕节市,23,12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是形;(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC′,四边形CDBC′是形;(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。第23题图解析:(1)利用平行四边形的判定,对角线互相平分的四边形是平行四边形得出即可;(2)利用旋转变换的性质以及直角梯形判定得出即可;(3)利用等腰梯形的判定方法得出BD∥AC,AD=CE,即可得出答案.解案:解:(1)平行四边形;证明:∵AD=AB,AA′=AC,∴A′C与BD互相平分,∴四边形A′BCD是平行四边形;(2)∵DA由垂直于AB,逆时针旋转到点D、A、B在同一直线上,7∴旋转角为90度;证明:∵∠D=∠B=90°,A,D,B在一条直线上,∴CD∥BC′,∴四边形CDBC′是直角梯形;故答案为:90,直角梯;(3)四边形ADBC是等腰梯形;证明:过点B作BM⊥AC,过点D作DN⊥AC,垂足分别为M,N,∵有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.∴△ACD≌△A′BC′,∴BM=ND,∴BD∥AC,∵AD=BC,∴四边形ADBC是等腰梯形.点评:此题主要考查了图形的剪拼与平行四边形的判定和等腰梯形的判定、直角梯形的判定方法等知识,熟练掌握判定定理是解题关键.7.(2012山西,25,12分)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【解析】(1)解:故答案为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),角平分线上的点到角的两边距离相等.8(2)证明:∵CA=CB,∴∠A=∠B,∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°,∵在△OMA和△ONB中,∴△OMA≌△ONB(AAS),∴OM=ON.(3)解:OM=ON,OM⊥ON.理由如下:连接CO,则CO是AB边上的中线.∵∠ACB=90°,∴OC=AB=OB,又∵CA=CB,∴∠CAB=∠B=45,∠1=∠2=45°,∠AOC=∠BOC=90°,∴∠2=∠B,∵BN⊥DE,∴∠BND=90°,又∵∠B=45°,∴∠3=45°,∴∠3=∠B,∴DN=NB.∵∠ACB=90°,∴∠NCM=90°.又∵BN⊥DE,∴∠DNC=90°∴四边形DMCN是矩形,∴DN=MC,∴MC=NB,∴△MOC≌△NOB(SAS),∴OM=ON,∠MOC=∠NOB,∴∠MOC﹣∠CON=∠NOB﹣∠CON,即∠MON=∠BOC=90°,∴OM⊥ON.9【答案】(1)解:故答案为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),角平分线上的
本文标题:动态与变换专题
链接地址:https://www.777doc.com/doc-2614506 .html