您好,欢迎访问三七文档
课题反比例函数的图像和性质(1)课型新授时间教学目标知识与技能会用描点法画反比例函数的图象过程与方法结合图象分析并掌握反比例函数的性质情感、态度与价值观体会函数的三种表示方法,领会数形结合的思想方法重点理解并掌握反比例函数的图象和性质难点正确画出图象,通过观察、分析,归纳出反比例函数的性质教学过程二次备课一、课堂引入提出问题:1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么?其性质有哪些?正比例函数y=kx(k≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3.反比例函数的图象是什么样呢?二、例习题分析例2见教材P41,用描点法画图,注意强调:(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.例1(补充)已知反比例函数32)1(mxmy的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1kxy(k≠0)自变量x的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k<0,则m-1<0,不要忽视这个条件.例2(补充)如图,过反比例函数xy1(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()(A)S1>S2(B)S1=S2(C)S1<S2(D)大小关系不能确定博兴县第六中学数学教学案设计设计者:王霞审核人:周文涛三、随堂练习1.已知反比例函数xky3,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2.函数y=-ax+a与xay(a≠0)在同一坐标系中的图象可能是()3.在平面直角坐标系内,过反比例函数xky(k>0)的图象上的一点分别作x轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为四、课后练习1.若函数xmy)12(与xmy3的图象交于第一、三象限,则m的取值范围是2.反比例函数xy2,当x=-2时,y=;当x<-2时;y的取值范围是;当x>-2时;y的取值范围是3.已知反比例函数yaxa()226,当x0时,y随x的增大而增大求函数关系式.板书设计问题释疑教学反思
本文标题:反比例函数第二课时
链接地址:https://www.777doc.com/doc-2615166 .html