您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 广东省高考数学试卷理科答案与解析
12010年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•广东)若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|﹣1<x<1}B.{x|﹣2<x<1}C.{x|﹣2<x<2}D.{x|0<x<1}【考点】并集及其运算.菁优网版权所有【专题】集合.【分析】由于两个集合已知,故由交集的定义直接求出两个集合的交集即可.【解答】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.【点评】常用数轴图、函数图、解析几何中的图或文恩图来解决集合的交、并、补运算.2.(5分)(2010•广东)若复数z1=1+i,z2=3﹣i,则z1•z2=()A.4+2iB.2+iC.2+2iD.3【考点】复数代数形式的乘除运算.菁优网版权所有【专题】数系的扩充和复数.【分析】把复数z1=1+i,z2=3﹣i代入z1•z2,按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式.【解答】解:z1•z2=(1+i)•(3﹣i)=1×3+1×1+(3﹣1)i=4+2i;故选A.【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.3.(5分)(2010•广东)若函数f(x)=3x+3﹣x与g(x)=3x﹣3﹣x的定义域均为R,则()A.f(x)与g(x)均为偶函数B.f(x)为奇函数,g(x)为偶函数C.f(x)与g(x)均为奇函数D.f(x)为偶函数,g(x)为奇函数【考点】函数奇偶性的判断.菁优网版权所有【专题】函数的性质及应用.【分析】首先应了解奇函数偶函数的性质,即偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).然后在判断定义域对称性后,把函数f(x)=3x+3﹣x与g(x)=3x﹣3﹣x代入验证.即可得到答案.【解答】解:由偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).对函数f(x)=3x+3﹣x有f(﹣x)=3﹣x+3x满足公式f(﹣x)=f(x)所以为偶函数.对函数g(x)=3x﹣3﹣x有g(﹣x)=3﹣x﹣3x=﹣g(x).满足公式g(﹣x)=﹣g(x)所以为奇函数.所以答案应选择D.【点评】此题主要考查函数奇偶性的判断,对于偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x)做到理解并记忆,以便更容易的判断奇偶性.4.(5分)(2010•广东)已知数列{an}为等比数列,Sn是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,则S5=()A.35B.33C.31D.29【考点】等比数列的性质;等比数列的前n项和.菁优网版权所有2【专题】等差数列与等比数列.【分析】用a1和q表示出a2和a3代入a2•a3=2a1求得a4,再根据a4+2a7=a4+2a4q3,求得q,进而求得a1,代入S5即可.【解答】解:a2•a3=a1q•a1q2=2a1∴a4=2a4+2a7=a4+2a4q3=2×∴q=,a1==16故S5==31故选C.【点评】本题主要考查了等比数列的性质.属基础题.5.(5分)(2010•广东)“”是“一元二次方程x2+x+m=0有实数解”的()A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断;一元二次方程的根的分布与系数的关系.菁优网版权所有【专题】简易逻辑.【分析】利用充分必要条件的判断法判断这两个条件的充分性和必要性.关键看二者的相互推出性.【解答】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.(5分)(2010•广东)如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图(也称主视图)是()3A.B.C.D.【考点】简单空间图形的三视图.菁优网版权所有【专题】立体几何.【分析】根据几何体的三视图的作法,结合图形的形状,直接判定选项即可.【解答】解:△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC,且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图中,CC′必为虚线,排除B,C,3AA′=BB′说明右侧高于左侧,排除A.故选D【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.7.(5分)(2010•广东)sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【考点】两角和与差的余弦函数.菁优网版权所有【专题】三角函数的求值.【分析】由题意知本题是一个三角恒等变换,解题时注意观察式子的结构特点,根据同角的三角函数的关系,把7°的正弦变为83°的余弦,把53°的余弦变为37°的正弦,根据两角和的余弦公式逆用,得到特殊角的三角函数,得到结果.【解答】解:sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选:A.【点评】本题考查两角和与差的公式,是一个基础题,解题时有一个整理变化的过程,把式子化归我可以直接利用公式的形式是解题的关键,熟悉公式的结构是解题的依据.8.(5分)(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()4A.1205秒B.1200秒C.1195秒D.1190秒【考点】分步乘法计数原理;排列及排列数公式.菁优网版权所有【专题】排列组合.【分析】彩灯闪烁实际上有5个元素的一个全排列,每个闪烁时间为5秒共5×120秒,每两个闪烁之间的间隔为5秒,共5×(120﹣1),解出共用的事件.【解答】解:由题意知共有5!=120个不同的闪烁,每个闪烁时间为5秒,共5×120=600秒;每两个闪烁之间的间隔为5秒,共5×(120﹣1)=595秒.那么需要的时间至少是600+595=1195秒.故选C【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.二、填空题(共7小题,满分30分)9.(5分)(2011•上海)函数f(x)=lg(x﹣2)的定义域是(2,+∞).【考点】对数函数的定义域.菁优网版权所有【专题】函数的性质及应用.【分析】对数的真数大于0,可得答案.【解答】解:由x﹣2>0,得x>2,所以函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查对数函数的定义域,是基础题.10.(5分)(2010•广东)若向量,,,满足条件,则x=2.【考点】空间向量运算的坐标表示.菁优网版权所有【专题】空间向量及应用.【分析】先求出,再利用空间向量的数量积公式,建立方程,求出x【解答】解:,,解得x=2,故答案为2.【点评】本题考查了空间向量的基本运算,以及空间向量的数量积,属于基本运算.11.(5分)(2010•广东)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则sinC=1.【考点】正弦定理.菁优网版权所有5【专题】解三角形.【分析】先根据A+C=2B及A+B+C=180°求出B的值,再由正弦定理求得sinA的值,再由边的关系可确定A的值,从而可得到C的值确定最后答案.【解答】解:由A+C=2B及A+B+C=180°知,B=60°,由正弦定理知,,即;由a<b知,A<B=60°,则A=30°,C=180°﹣A﹣B=90°,于是sinC=sin90°=1.故答案为:1.【点评】本题主要考查正弦定理的应用和正弦函数值的求法.高考对三角函数的考查以基础题为主,要强化记忆三角函数所涉及到的公式和性质,做到熟练应用.12.(5分)(2010•广东)若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是(x+2)2+y2=2.【考点】关于点、直线对称的圆的方程.菁优网版权所有【专题】直线与圆.【分析】设出圆心,利用圆心到直线的距离等于半径,可解出圆心坐标,求出圆的方程.【解答】解:设圆心为(a,0)(a<0),则,解得a=﹣2.圆的方程是(x+2)2+y2=2.故答案为:(x+2)2+y2=2.【点评】圆心到直线的距离等于半径,说明直线与圆相切;注意题目中圆O位于y轴左侧,容易疏忽出错.13.(5分)(2010•广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1.5,2,则输出的结果s为.6【考点】程序框图.菁优网版权所有【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加S的值并输出,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序运行过程中,各变量值变化情况如下表:第一(i=1)步:s1=s1+xi=0+1=1第二(i=2)步:s1=s1+xi=1+1.5=2.5第三(i=3)步:s1=s1+xi=2.5+1.5=4第四(i=4)步:s1=s1+xi=4+2=6,s=×6=第五(i=5)步:i=5>4,输出s=故答案为:【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.14.(5分)(2010•广东)如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,PD=,∠OAP=30°,则CP=a.7【考点】与圆有关的比例线段.菁优网版权所有【专题】直线与圆.【分析】先由垂径定理可得直角三角形PAO,从而用a表示BP,再利用圆中线段相交弦关系得关于CP的等式,即可求得CP.【解答】解:因为点P是AB的中点,由垂径定理知,OP⊥AB.在Rt△OPA中,.由相交弦定理知,BP•AP=CP•DP,即,所以.故填:.【点评】此题考查的是直角三角形的性质、勾股定理及垂径定理的综合应用,本题还考查与圆有关的比例线段、圆中的切割线定理,属于基础题.15.(2010•广东)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=﹣1的交点的极坐标为.【考点】简单曲线的极坐标方程.菁优网版权所有【专题】坐标系和参数方程.【分析】先将原极坐标方程ρ=2sinθ与ρcosθ=﹣1化成直角坐标方程,再利用直角坐标方程求出交点,最后再转化成极坐标.【解答】解:两条曲线的普通方程分别为x2+y2=2y,x=﹣1.解得由得点(﹣1,1),极坐标为.8故填:.【点评】本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.三、解答题(共6小题,满分80分)16.(14分)(2010•广东)已知函数f(x)=Asin(3x+ρ)(A>0,x∈(﹣∞,+∞),0<ρ<π)在时取得最大值4.(1)求f(x)的最小正周期;(2)求f(x)的解析式;(3)若,求sinα.【考点】三角函数的周期性及其求法;三角函数
本文标题:广东省高考数学试卷理科答案与解析
链接地址:https://www.777doc.com/doc-2620172 .html