您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 动量守恒定律的应用(复习课)
-1-动量守恒定律的应用(复习课)一、考情分析考试大纲1.动量守恒定律Ⅱ2.弹性碰撞和非弹性碰撞Ⅰ考纲解读1.动量守恒定律的应用是本章重点、高考热点,动量、动量的变化量两个概念常穿插在规律中考查.2.在高考题中动量守恒定律常与能量的转化和守恒定律结合,解决碰撞、打击、反冲、滑块摩擦等问题,还要重视动量守恒与圆周运动、核反应的结合.二、考点知识梳理(一)、动量守恒定律1、动量守恒定律内容:系统不受外力或所受外力的合力为零,这个系统的总动量就保持不变。用公式表示为:PPPP1212或mvmvmvmv11221122用牛顿第三定律和动量定理推导动量守恒定律:如图14-2-1所示,在光滑水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,而且v1>v2。则它们的总动量(动量的矢量和)P=p1+p2=m1v1+m2v2。经过一定时间m1追上m2,并与之发生碰撞,设碰后二者的速度分别为,1v和,2v,此时它们的动量的矢量和,即总动量'22'11'2'1'vmvmppp下面从动量定理和牛顿第三定律出发讨论p和p′有什么关系。设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是t。根据动量定理,m1球受到的冲量是F1t=m1v′1-m1v1;m2球受到的冲量是F2t=m2v′2-m2v2。根据牛顿第三定律,F1和F2大小相等,方向相反,即F1t=-F2t。则有:m1v′1-m1v1=-(m2v′2-m2v2)整理后可得:22112211vmvmvmvm,p′=p2、动量守恒定律适用的条件①系统__不受力或_所受合外力为零_.14-2-1-2-②当内力_远远大于_外力时.③某一方向_不受力或所受_合外力为零__,或该方向上内力_远远大于外力时,该方向的动量守恒.3、常见的表达式(1)P=P/(系统相互作用前的总动量P等于相互作用后的总动量P/)(2)ΔP=0(系统总动量的增量为零)(3)ΔP1=ΔP2(相互作用的两个物体组成的系统,两物体动量增量大小相等、方向相反)(4)m1v1+m2v2=m1v1/+m2v2/(相互作用的两个物体组成的系统,作用前系统的总动量等于作用后系统的总动量)(二)、对动量守恒定律的理解(1)动量守恒定律是说系统内部物体间的相互作用只能改变每个物体的动量,而不能改变系统的总动量,在系统运动变化过程中的任一时刻,单个物体的动量可以不同,但系统的总动量相同。(2)应用此定律时我们应该选择地面或相对地面静止或匀速直线运动的物体做参照物,不能选择相对地面作加速运动的物体为参照物。(3)动量是矢量,系统的总动量不变是说系统内各个物体的动量的矢量和不变。等号的含义是说等号的两边不但大小相同,而且方向相同。(三)、动量守恒定律的“四性”在应用动量守恒定律处理问题时,要注意“四性”①矢量性:动量守恒定律是一个矢量式,,对于一维的运动情况,应选取统一的正方向,凡与正方向相同的动量为正,相反的为负。若方向未知可设与正方向相同而列方程,由解得的结果的正负判定未知量的方向。②瞬时性:动量是一个状态量,即瞬时值,动量守恒指的是系统任一瞬时的动量恒定,列方程m1vl+m2v2=m1v/l+m2v/2时,等号左侧是作用前各物体的动量和,等号右边是作用后各物体的动量和,不同时刻的动量不能相加。③相对性:由于动量大小与参照系的选取有关,应用动量守恒定律时,应注意各物体的速度必须是相对于同一惯性参照系的速度,一般以地球为参照系④普适性:动量守恒定律不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统,不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。(四)、动量守恒定律的应用1、反冲运动①定义:反冲运动是当一个物体向某个方向射出化的一部分时,这个物体的剩余部分将向相反的-3-方向运动的现象。②反冲中的动量守恒物体间的相互作用力是变力,作用时间短,作用力很大,远大于系统受到的外力,可以用动量守恒定律来处理。③反冲中的能量因为有其它形式的能转化为动能,所以系统的动能会增加④反冲的应用之“人船模型”两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒。这类问题的特点:两物体同时运动,同时停止。如图14-2-2所示,长为L,质量为m1的小船停在静水中,一个质量为m2的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向上不受外力作用,所以水平方向动量守恒,人起步前系统的总动量为零.当人起步加速前进时,船同时向后加速运动;当人匀速前进时,船同时向后匀速运动;当人停下来时,船也停下来.设某一时刻人对地的速度为v2,船对地的速度为v1,选人前进的方向为正方向,根据动量守恒定律有02211mm即2211mm。把方和两边同时乘以时间t,tmtm2211即2211smsm上式是人船模型的位移与质量的关系式,此式的适用条件是:一个原来处于静止状态的系统,在系统发生相对运动的过程中,有一个方向动量守恒(如水平方向或竖直方向).使用这一关系应注意:1s和是2s相对同一参照物的位移.由图可以看出Lss21与2211smsm联立解得Lmmms2121Lmmms211114-2-2-4-“人船模型”的特点:人动“船”动,人停“船”停,人快“船”快,人慢“船”慢,人上“船”下,人左“船”右。2、碰撞过程研究(1)碰撞过程的特征:“碰撞过程”作为一个典型的力学过程其特征主要表现在如下两个方面:①碰撞双方相互作用的时间t一般很短;通常情况下,碰撞所经历的时间在整个力学过程中都是可以初忽略的;②碰撞双方相互作用的力作为系统的内力一般很大。(2)“碰撞过程”的规律正是因为“碰撞过程”所具备的“作用时间短”和“外力很小”(甚至外力为零)这两个特征,才使得碰撞双方构成的系统在碰撞前后的总动量遵从守恒定律。(3)碰撞分类从碰撞过程中形变恢复情况来划分:①形变完全恢复的叫弹性碰撞;②形变完全不恢复的叫完全非弹性碰撞;③而形变不能够完全恢复叫非完全弹性碰撞。从碰撞过程中机械能损失情况来划分:①机械能不损失的叫弹性碰撞;②机械能损失最多的叫完全非弹性碰撞;③而一般的碰撞其机械能有所损失。(4)“碰撞过程”的特例弹性碰撞作为碰撞过程的一个特例,它是所有碰撞过程的一种极端的情况:形变能够完全恢复;机械能丝毫没有损失。弹性碰撞除了遵从上述的动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,即②①2222112222112211221121212121vmvmvmvmvmvmvmvm解得212212112mmvmvmmv-5-vmmvmvmm221211122讨论:当碰前物体2的速度不为零时①当mm12时,vvvv1221,即mm12、交换速度。当碰前物体2的速度为零时②当v20时,vmmvmmvmvmm112112211122,,21mm11v1'22mm1201v1'221mm11v0'2完全非弹性碰撞作为碰撞过程的一个特别,它是所有碰撞过程的另一种极端的情况:形变完全不能够恢复;机械能损失达到最大。正因为完全非弹性碰撞具备了“形变完全不能够恢复”。所以在遵从上述的动量守恒定律外,还具有:碰撞双方碰后的速度相等的特征,即21vv由此即可把完全非弹性碰撞后的速度1v和2v表为21221121mmmmvv(5)制约碰撞过程的规律。①碰撞过程遵从动量守恒定律22112211vmvmvmvm②碰撞后系统动能不增原则:碰撞过程中系统内各物体的动能将发生变化,对于弹性碰撞,系统内物体间动能相互转移?没有转化成其他形式的能,因此总动能守恒;而非弹性碰撞过程中系统内物体相互作用时有一部分动能将转化为系统的内能,系统的总动能将减小.因此,碰前系统的总动能一定大于或等于碰后系统的总动能'2'121kkkkEEEE-6-或12'112'12221212222mPmPmPmP③碰撞前后的运动情况要合理,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度广义碰撞(软碰撞)问题把碰撞定义中关于时间极短的限制取消,物体(系统)动量有显著变化的过程,就是广义碰撞(软碰撞)图景,它在实践中有广泛的应用。(五)、应用动量守恒定律的基本思路1.明确研究对象和力的作用时间,即要明确要对哪个系统,对哪个过程应用动量守恒定律。2.分析系统所受外力、内力,判定系统动量是否守恒。3.分析系统初、末状态各质点的速度,明确系统初、末状态的动量。4.规定正方向,列方程。5.解方程。如解出两个答案或带有负号要说明其意义注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系三、考点知识解读考点1.动量是否守恒的判断剖析:判断动量是否守恒,首先要看清系统是由哪些物体所组成的,然后再根据动量守恒的条件进行判断(具备下列条件之一即可):①系统不受外力;②系统受外力,但外力的合力为零;③系统在某一方向上不受外力或合外力为零;④系统所受的外力远小于内力或某一方向上外力远小于内力。满足前三条中的任何一个条件,系统的动量都是守恒的,满足第四个条件时系统的动量是近似守恒。动量守恒是自然界普遍适用的基本规律之一,它既适用于宏观、低速的物体,也适用于微观、高速的物体。[例题1]把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹和小车的下列说法中正确的是A.枪和子弹组成的系统动量守恒B.枪和小车组成的系统动量守恒-7-C.只有在忽略子弹和枪筒之间的摩擦的情况下,枪、子弹和小车组成的系统动量才近似守恒D.枪、子弹和小车组成的系统动量守恒解析:对于枪和子弹自成的系统,在发射子弹时由于枪水平方向上受到小车对它的作用力,所以动量是不守恒的,选项A错;同理,对于枪和小车所组成的系统,在发射子弹的瞬间,枪受到火药对它的推力作用,因此动量也是不守恒的,选项B错;对于枪、子弹和小车组成的系统而言,火药爆炸产生的推力以及子弹和枪筒之间的摩擦力都是系统的内力,没有外力作用在系统上,所以这三者组成的系统动量是守恒的,选项C错,D正确。故,答案选D。【变式训练1】如图14-2-3所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑则()A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h处【解析】小球在下滑过程中,对小球和槽动量守恒,由于质量都是m,所以球离开槽时速度大小相同,设大小为V。小球和弹簧作用过程中机械能守恒,所以小球被弹回离开弹考点2.多物体多过程问题剖析:对于两个以上的物体组成的物体系统,由于物体较多,相互作用的情况也不尽相同,作用过程较为复杂,虽然仍可对初未状态建立动量守恒的关系式,但因未知条件多而无法解,这时往往要根据作用过程中的不同阶段,建立多个动量守恒的方程,或将系统内物体按作用的关系分成几个小系统,分别建立动量守恒定律方程。解这类问题时应注意:(1)正确分析作用过程中各物体状态的变化情况,建立运动模型。(2)分清作用过程的各个阶段和联系阶段的状态量。(3)合理地选取研究对象,既要符合动量守恒的条件,又要方便于解题。h14-2-3-8-(4)对于多个物体组成的系统的动量守恒问题,有的应用整体动量守恒,有的只应用某部分动量守恒。有时只需抓住初、末状态的动量守恒即可,要善于灵活选择研究对象,灵活选择研究过程,才能使解答简捷。[例题2](如东、启东2008届期中联合测试)如图14-2-4所示,一质量m2=0.25kg的
本文标题:动量守恒定律的应用(复习课)
链接地址:https://www.777doc.com/doc-2628087 .html