您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 分子筛温度曲线的研究与事例分析
分子筛温度曲线的研究与事例分析张晨一、分子筛纯化器的工作原理及结构特点我国第六代制氧机的一个重要特点就是采用吸附法净化空气中的水分、二氧化碳、乙炔和其它碳氢化合物。吸附法就是用活性氧化铝、分子筛等吸附剂在常温下将空气中所含的水分、二氧化碳这些吸附质吸附在其表面上(没有化学反应),加热再生时利用吸附剂高温下吸附容量减小的特性,再把吸附质解吸出来,从而达到连续净化空气的目的。我厂1﹟、2﹟14000m3/h制氧机以及新建的23000m3/h制氧机的分子筛纯化系统均选用卧式双层床结构的纯化器,纯化器下部装填活性氧化铝,上部装填分子筛(四车间分子筛纯化器内活性氧化铝和13X分子筛的充装量分别为5000Kg和11000Kg,五车间的为12571Kg和17512Kg,23000m3/h制氧机为15000Kg和20000Kg)。空压机后经空冷塔冷却的低温饱和空气从纯化器下部进入分子筛,先由活性氧化铝将其所含的大部分水分吸附掉,然后再由分子筛吸附二氧化碳、乙炔和其它碳氢化合物。双层床结构的分子筛纯化器相比只充填分子筛的单层床纯化器具有增强吸附效果、延长使用时间、降低再生能耗、延长使用寿命的特点。具体分析如下:活性氧化铝对于含水量较高的空气,吸附容量比较大,而且对水分的吸附热也比分子筛小,其大量吸附水分后使空气温升较小,有利于后部分分子筛对二氧化碳的吸附,而且双层床纯化器净化空气的程度比单层床更高,空气的干燥程度可以由原来露点的-60℃降到-66~-70℃,净化后空气中的二氧化碳含量也更低;采用双层吸附床,可以延长纯化器的使用时间,经试验得出:双层床结构的分子筛纯化器比单床层结构的有效工作时间可延长25~30%;活性氧化铝解吸水分容易,而分子筛较为困难,分子筛再生时其冷吹峰值需要达到120℃以上才能保证其再生完善,而活性氧化铝只需要达到80℃左右即可,这样一来就可以降低整个系统的再生温度,从而节省了再生能耗(对于双层床结构的分子筛纯化器一般将冷吹峰值控制在100℃以上,作为其再生完善的主要标志);活性氧化铝颗粒较大,且坚硬,机械强度较高,吸水不龟裂、粉化,所以双层床的活性氧化铝可以减少分子筛粉化,延长分子筛寿命,活性氧化铝处于加工空气入口处,还可以起到均匀分配空气的作用;铝胶还具有抗酸性,对分子筛能起到保护作用。二、分子筛曲线研究:分子筛纯化器利用常温吸附、高温解吸来达到连续净化空气的目的,在这一交变过程中,特别需要对其进、出口温度加以监控,以掌握其使用情况。在吸附过程中,空气进、出纯化器的两条温度变化曲线被称为“吸附温度曲线”;在再生过程中,污氮气进、出纯化器的两条温度变化曲线被称为“再生温度曲线”。1、吸附温度曲线:一般情况下,只要空气预冷系统正常,空气进纯化器温度就不会变化,因而温度曲线是一条水平的直线。而空气出纯化器温度除刚开始的一段时间较高外,以后变化也极小,因而也近似是一条直线。典型的吸附温度曲线如图1所示。空气在经过纯化器后,温度会有所升高。这是因为空气中的水分和二氧化碳被分子筛吸附,而吸附是个放热过程。对于全低压流程空分设备而言,空气进纯化器压力在0.5Mpa(G)左右,空气进纯化器温度约为10~15℃左右。在这种情况下,空气进出纯化器温度之差约为4~6℃。如果空气进纯化器温度升高,则温差也相应会有所增大,这是因为空气温度升高使得空气中水含量增多。如果在纯化器使用过程中(刚开始使用的一段时间除外),出纯化器空气温度突然升高,而进纯化器温度和压力却较为稳定,这种情况往往显示空气已经将空冷塔的水带入分子筛纯化器了(如安龙3200m3/h制氧机分子筛进水事故时,就出现了运行中的分子筛进水导致出纯化器空气温度突然升高的现象)。在分子筛纯化器由再生转为使用,吸附工作刚开始的一段时间内,空气出纯化器温度较高,这时出口温度要比进口高出20℃以上。这种现象除了是由于再生过程中的冷吹不彻底造成的以外,还由于纯化器在切换至使用前的升压过程中释放吸附热所造成的。在空分设备中用于吸附水分和二氧化碳的13X分子筛,除对极性分子如水和二氧化碳等具有吸附能力外,对非极性的氮气和氧气也有一定的吸附作用。升压过程是一个压力上升的过程,随着压力升高,分子筛的静吸附容量增大,更多的氮气和氧气被分子筛所吸附。而这个过程同样是个放热的过程,这种放热使得分子筛床层温度升高。当升压后的纯化器转为使用时,空气将分子筛床层的热量带出来,从而引起出口温度的升高(由于升压阀的位置不同,故升压过程中空气进出口温度的变化也不同,如1﹟14000m3/h制氧机分子筛升压阀在分子筛纯化器后,故在升压过程中空气进口温度的温升远远大于空气出口的温升。而2﹟14000m3/h制氧机因为升压阀在纯化器前,其温度变化就大不相同)。由于这种现象不单单因为冷吹不彻底引起,所以无法通过延长冷吹时间来解决。于是有的空分设备中(如2﹟14000m3/h制氧机),采用增加一个“两组分子筛并行运行”的步骤,用来减少这种温度波动对主换热器的不利影响。这样一来由于从原使用的纯化器中出来的空气温度是较低的,混合在一起的空气温度也就不至于会象单独使用一个纯化器那样高了。2、再生温度曲线AB卸压阶段BC加热阶段CD冷吹阶段DE充压阶段相对于较为简单的吸附温度曲线而言,再生温度曲线要复杂一些。典型的再生温度曲线如图2所示。2.1卸压阶段(A-B)分子筛纯化器在较高工作压力下(0.5Mpa以上)完成吸附任务,而在较低的压力下(10Kpa左右)进行脱附再生。在纯化器由吸附转为再生时,首先将纯化器内的压力降下来。压力下降时,分子筛静吸附容量减小,原来被吸附的气体分子或水分子,便有部分会从分子筛中解吸出来。与吸附过程的放热效应相对应,脱附再生过程是个需要吸收热量的过程。在卸压阶段,脱附所需热量只能来自于分子筛床层本身,因而使得床层温度下降。受此影响,空气进口(污氮气出口)和空气出口(污氮气入口)温度同时开始下降(因为卸压阀在分子筛进口处,故卸压阶段空气出口温度较空气进口温度下降的幅度更大)。2.2加热阶段(B-C)加热阶段开始后,虽然污氮气进口温度迅速升高,但出口温度还会继续下降,最多可下降至-10℃左右,然后才会逐渐升高。经再生电加热器加热过的高温污氮气,在由上而下通过分子筛床层时,首先使得床层上部的分子筛温度升高并对上部的分子筛进行再生。在此过程中,污氮气的热量一方面传递给了上部的分子筛,另一方面被解吸出来的二氧化碳和水分带走了,故污氮气本身的温度迅速下降,到达纯化器底部时,温度已经很低了,所以污氮气出口温度不会很快升高。加热阶段需要加以监控的主要是污氮气进口温度,它和污氮气流量、加热时间等一起体现了带入纯化器中的热量的多少。污氮气进口温度主要由电加热器的运行状况以及再生污氮气的实际流量等因素所决定。一般来说,加热阶段主要解吸的是分子筛床层的中上部,并且将热量贮存在分子筛床层中。2.3冷吹阶段(C-D)在冷吹阶段,一方面利用加热阶段贮存在分子筛床层中的热量继续解吸下部的活性氧化铝,另一方面将床层中的热量带出来,从而为再次投入使用作准备。冷吹开始后,污氮气进口温度迅速下降,但出口温度还会继续上升,一直达到某个最高点后,才会逐渐下降。冷吹阶段的污氮气出口温度变化曲线(以下简称冷吹曲线)特别重要。冷吹曲线上的最高温度点称为“冷吹峰值”,它是再生过程是否完善的主要标志。床层中的分子筛在再生过程中温度自上而下是递减的,所以最底层的分子筛总是再生得最不彻底。对于双层床分子筛纯化器,如果冷吹峰值达到100℃,则说明纯化器内上部的分子筛和下部的活性氧化铝都已再生好了(靠近筒体的边缘区因存在散热问题除外)。影响冷吹峰值的因素主要是加热阶段进纯化器的再生污氮气的温度高低、流量大小以及加热时间的长短等等。此外,如果在上一个使用周期中分子筛吸附了太多的水分和二氧化碳(即吸附饱和),而在再生时也没有增加再生热量,则冷吹峰值会下降(如1﹟14000m3/h制氧机发生分子筛吸附饱和事故时就出现了冷吹峰值大幅下降的现象)。如果分子筛在使用过程进水,则冷吹峰值也会显著下降。如果冷吹曲线上会出现多个峰值,则说明分子筛床层不平整。良好的分子筛床层,在任何一个水平截面上的温度梯度应该较小,这样的床层在再生过程中,最底层的分子筛各处温度差不多始终相等,温度变化曲线也相同。而仪表所记录下的是各处出来的气体混合在一起后的温度变化曲线,可以认为是一系列的波形曲线综合在一起后所形成的曲线。由于这一系列的波形曲线均相同且无相位差,故综合成的曲线形状不会有所改变。在另一种情况下,当分子筛床层厚薄不均匀时,较薄处分子筛量少而流过的气量多,分子筛温度变化得就比较快,而较厚处情况正好相反。这样最底层的各处不是同时达到峰值,综合成的波形曲线中就有可能出现两个甚至三个峰值。一般来说,分子筛床层不平整时,冷吹曲线的形状也会变得“矮”和“胖”一些。冷吹结束时的污氮气出纯化器温度是另一个需要加以控制的指标,该温度如果过高,则纯化器由再生转为使用时空气就会将这一部分热量带入主板式换热器,近而对其工作状况产生不良影响。该温度主要由冷吹时间、再生气流量以及加热过程中带入热量多少等因素决定。一般来说,分子筛床层不平整时,冷吹到指定温度需要更长的时间。2.4升压阶段(D-E)升压阶段的纯化器内压力是增加的,前面已经叙述过,这是空气中杂质被分子筛吸附,而床层温度升高的过程。受床层温度升高以及保温层中残余热量的影响,污氮气进出口温度都会上升。三、相关事故分析:1、1﹟14000m3/h分子筛吸附饱和事故的分析2002年10月11日0:58,四车间2﹟冷冻机(美国原装进口开利冷冻机)因轴承温度超高联锁停运(后经检查确认为电机烧了,经研究决定报废了该机组,并新定了一台顿汉布什公司生产的多机头螺杆式冷冻机,并于日前投运),在启动1﹟冷冻机(上海合资开利冷冻机)时又因为本身故障多次未果,而在前一天恰好对一台凉水塔风机进行检修,尚未恢复。这样以来,造成空冷塔下段常温水温度只能达到25℃,而空冷塔上段低温水温度和常温水温度相同,由此分子筛进口温度由正常运行的10℃上涨至28℃左右,从表一可以看出,进分子筛的空气温度由10℃增加到28℃,则其水分含量增加了两倍以上。于是两组分子筛运行到后期都出现了吸附饱和、出分子筛的CO2含量超标的现象。因为,当时未及时增加分子筛再生热量,造成两组分子筛冷吹峰值偏低、再生效果差的现象(如图3所示)。6:20因氩净化系统微量水超标,停运制氩系统。表一:空气在不同温度下的饱和含水量表温度℃水分含量g/m3蒸汽压Pa3030.304239.22827.203776.92621.802981.61210.681401.5108.281072.45图3吸附饱和的再生温度曲线当天上午进行了如下操作,用于增加分子筛再生热量、提高吸附效果:将再生污氮气进电加热器的阀门全开,使经过电加热器的再生污氮气量提到最大;将备用电加热器启动,使两台电加热器全部运行,同时提高出电加热器再生污氮气的设定温度;加大冷吹阶段时的再生污氮气量;适当缩短每组分子筛的使用时间;最后,根据分子筛使用时恶化的程度决定是否减少加工空气量,以确保二氧化碳和水不进入或少进入主板式换热器空气和增压空气通道并在其冻结,影响制氧机的使用寿命。经抢修,上午及时恢复了昨天尚未检修完的一台凉水塔风机,同时13:35再次启动1﹟冷冻机成功,使其投运正常运行。随着常温水和低温水温度恢复正常,进分子筛的空气温度以及含水量也随即恢复正常,分子筛吸附负荷大幅下降。第二天,当两组分子筛冷吹峰值连续几个周期均达到或超过正常值,而且两组分子筛在每次吸附过程后期均未出现出分子筛的CO2含量超标的现象,则标志着分子筛运行状态恢复正常,于是将“增加分子筛再生热量、提高吸附效果”的几种操作逐一恢复到正常状态。本次分子筛吸附饱和事故未造成板式冻结及影响制氧机使用寿命。2、凌源分子筛层床受冲击的事故分析辽宁省凌源钢铁公司制氧厂6000m3/h制氧机于1997年7月投产,同年12月21日,发生了一次因误操作导致分子筛层床受冲击的事故。图4床层不平整冷吹温度曲线当天由
本文标题:分子筛温度曲线的研究与事例分析
链接地址:https://www.777doc.com/doc-2649447 .html