您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三代数上学期难题集答案及解析
初三代数上学期难题集粹参考答案与试题解析一.选择题(共14小题)1.(2011•衢州)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4考点:角平分线的性质;垂线段最短。808375分析:根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.解答:解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=2,故选B.点评:此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置.2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.5.5C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质。808375专题:计算题。分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.3.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PA平分∠BAC,则△APD与△APE全等的理由是()A.SASB.AASC.SSSD.ASA考点:直角三角形全等的判定;角平分线的性质。808375分析:根据已知条件在三角形中的位置来选择判定方法,本题中有两角及一角的对边对应相等,所以应选择AAS,比较简单.解答:解:由已知得,AP=AP,∠DAP=∠EAP,∠ADP=∠AEP所以符合AAS判定.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.结合已知条件在图形上的位置选择判定方法.4.在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A.3.8cmB.7.6cmC.11.4cmD.11.2cm考点:角平分线的性质。808375分析:由∠C=90°,∠CAB=60°,可得∠B的度数,故BD=2DE=7.6,又AD平分∠CAB,故DC=DE=3.8,由BC=BD+DC求解.解答:解:∵∠C=90°,∠CAB=60°,∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,又∵AD平分∠CAB,∴DC=DE=3.8,∴BC=BD+DC=7.6+3.8=11.4.故选C.点评:本题主要考查平分线的性质,由已知能够注意到D到AB的距离DE即为CD长,是解题的关键.5.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③考点:角平分线的性质;全等三角形的判定。808375分析:从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到跟多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.解答:解:∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(第一个正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(第二个正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(第三个正确)故选D.点评:此题考查了角平分线的性质及全等三角形的判定方法等知识点,要求学生要灵活运用,做题时要由易到难,不重不漏.6.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cmB.12cmC.15cmD.17cm考点:线段垂直平分线的性质。808375分析:要求△ABC的周长,知道AE=3cm,则AB=6cm,只要求得BC+AC即可,根据线段垂直平分线的性质得AD=BD,于是BC+AC等于△ADC的周长,答案可得.解答:解:∵AB的垂直平分AB,∴AE=BE,BD=AD∵AE=3cm,△ADC的周长为9cm∴△ABC的周长是9+2×3=15cm故选C.点评:此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.对线段进行等效转移时解答本题的关键.7.直角三角形三边垂直平分线的交点位于三角形的()A.形内B.形外C.斜边的中点D.不能确实考点:线段垂直平分线的性质。808375分析:垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.解答:解:∵直角三角形的外接圆圆心在斜边中点可得直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选C.点评:此题主要考查线段的垂直平分线的性质等几何知识,线段的垂直平分线上的点到线段的两个端点的距离相等.8.(2005•南通)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cmB.8cmC.10cmD.12cm考点:线段垂直平分线的性质。808375专题:计算题。分析:AC=AE+EC=BE+EC,根据已知条件易求.解答:解:∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=18.又∵BC=8,∴AC=10(cm).故选C.点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.9.(2010•益阳)如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点考点:角平分线的性质;线段垂直平分线的性质。808375分析:根据角平分线及线段垂直平分线的判定定理作答.解答:解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.点评:本题考查了角平分线及线段垂直平分线的判定定理.到一个角的两边距离相等的点在这个角的角平分线上;到一条线段两端距离相等的点在这条线段的垂直平分线上.10.(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°考点:三角形内角和定理;三角形的外角性质;翻折变换(折叠问题)。808375分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.解答:解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选D.点评:本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.11.如图,将书页斜折过去,使角的顶点A落在A′处,BC为折痕,BD为∠A′BE的平分线,则∠CBD=()A.45°B.90°C.135°D.120°考点:角的计算;翻折变换(折叠问题)。808375专题:计算题。分析:根据折叠得出∠ABC=∠CBA′=∠ABA′,根据角平分线,得出∠A′BD=∠A′BE,求出∠CBA′+∠A′BD=(∠ABA′+∠A′BE)=90°,即可得出答案.解答:解:∵将书页斜折过去,使角的顶点A落在A′处,BC为折痕,∴∠ABC=∠CBA′=∠ABA′,∵BD为∠A′BE的平分线,∴∠A′BD=∠A′BE,∴∠CBA′+∠A′BD=(∠ABA′+∠A′BE)=×180°=90°,即∠CBD=90°.故选B.点评:本题考查了角的计算和翻折变换的应用,关键是求出∠CBA′+∠A′BD=(∠ABA′+∠A′BE).12.如图,△ABC中,AE⊥BC于E,AD是△ABC的角平分线,若∠ACB=40°,∠BAE=30°,则∠DAB等于()A.55°B.50°C.40°D.35°考点:三角形内角和定理;角平分线的性质。808375专题:计算题。分析:根据三角形内角和定理求出∠B的度数,然后再利用三角形内角和定理求出∠BAC的度数,再利用AD是∠BAC的平分线,即可求出∠DAB的度数.解答:解:∵AE⊥BC,∴∠AEB=∠AEC=90°,∵∠BAE=30°,∴∠B=90°﹣∠BAE=90°﹣30°=60°,又∵∠ACB=40°,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣60°﹣40°=80°,又∵AD是∠BAC的平分线,∴∠DAB=∠BAC=×80°=40°.故选C.点评:此题主要考查学生对三角形内角和定理和角平分线的性质的理解和掌握,难度不大,属于基础题.13.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B.1:3C.2:3D.1:4考点:全等三角形的性质。808375分析:利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN的度数可求出结果.解答:解:在△ABC中,∠A:∠B:∠C=3:5:10设∠A=3x°,则∠ABC=5x°,∠ACB=10x°3x+5x+10x=180解得x=10则∠A=30°,∠ABC=50°,∠ACB=100°∴∠BCN=180°﹣100°=80°又△MNC≌△ABC∴∠ACB=∠MCN=100°∴∠BCM=∠NCM﹣∠BCN=100°﹣80°=20°∴∠BCM:∠BCN=20°:80°=1:4故选D点评:本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.14.(2003•烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°考点:直角三角形全等的判定;全等三角形的性质;等腰直角三角形。808375分析:先利用AAS判定△BDF≌△ADC,从而得出BD=DA,即△ABD为等腰直角三角形.所以得出∠ABC=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠BEA=∠ADC=90°.∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE∴∠FBD=∠FAE∵∠BDF=∠ADC=90°,BF=AC∴△BDF≌△ADC(ASA)∴BD=AD∴∠ABC=∠BAD=45°故选B.点评:本题考查三角形全等
本文标题:初三代数上学期难题集答案及解析
链接地址:https://www.777doc.com/doc-2654000 .html