您好,欢迎访问三七文档
1初三数学总复习圆的有关概念和性质一:【课前预习】(一):【知识梳理】1.圆的有关概念和性质(1)圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在国上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.(二):【课前练习】1.如图,A、B、C是⊙O上的三点,∠BAC=30°则∠BOC的大小是()A.60○B.45○C.30○D.15○2.如图,MN所在的直线垂直平分弦AB,利用这样的工具最少使用__________次,就可找到圆形工件的圆心.3.如图,A、B、C是⊙O上三个点,当BC平分∠ABO时,能得出结论_______(任写一个).4.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180°B.150°C.135°D.120°5.如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○B.50○C.65○D.130○2二:【经典考题剖析】1.如图,在⊙O中,已知∠ACB=∠CDB=60○,AC=3,则△ABC的周长是____________.2.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸3.如图,已知AB是半圆O的直径,弦AD和BC相交于点P,那么CDAB等于()A.sin∠BPDB.cos∠BPDC.tan∠BPDD.cot∠BPD4.⊙O的半径是5,AB、CD为⊙O的两条弦,且AB∥CD,AB=6,CD=8,求AB与CD之间的距离.5.如图,在⊙M中,弧AB所对的圆心角为1200,已知圆的半径为2cm,并建立如图所示的直角坐标系,点C是y轴与弧AB的交点。(1)求圆心M的坐标;(2)若点D是弦AB所对优弧上一动点,求四边形ACBD的最大面积三:【课后训练】1.如图,在⊙O中,弦AB=1.8。m,圆周角∠ACB=30○,则⊙O的直径等于_________cm.2.如图,C是⊙O上一点,O是圆心.若∠=35°,则∠AOB的度数为()A.35○B.70○C.105○D.150○3.如图,⊙O内接四边形ABCD中,AB=CD则图中和∠1相等的角有______4.在半径为1的圆中,弦AB、AC分别是3和2,则∠BAC的度数为多少?CDABOMYX35.如图,弦AB的长等于⊙O的半径,点C在AMB上,则∠C的度数是_______.6.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为()A.50°B.80°C.100°D.130°7.如图,四边形ABCD为⊙O的内接四边形,点E在CD的延长线上,如果∠BOD=120°,那么∠BCE等于()A.30°B.60°C.90°D.120°8.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形()9.如图,⊙O的直径AB=10,DE⊥AB于点H,AH=2.(1)求DE的长;(2)延长ED到P,过P作⊙O的切线,切点为C,若PC=225,求PD的长.10.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4,求这个圆形截面的半径.AB4点与圆、直线与圆、圆与圆的位置关系一【知识梳理】1.点与圆的位置关系:有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r,点到圆心的距离为d,则点在圆外d>r.点在圆上d=r.点在圆内d<r.2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r,圆心到直线的距离为d,则直线与圆相交d<r,直线与圆相切d=r,直线与圆相离d>r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d,两圆的半径分别为R和r,则①两圆外离d>R+r;有4条公切线;②两圆外切d=R+r;有3条公切线;③两圆相交R-r<d<R+r(R>r)有2条公切线;④两圆内切d=R-r(R>r)有1条公切线;⑤两圆内含d<R—r(R>r)有0条公切线.(注意:两圆内含时,如果d为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.(二):【课前练习】1.△ABC中,∠C=90°,AC=3,CB=6,若以C为圆心,以r为半径作圆,那么:⑴当直线AB与⊙C相离时,r的取值范围是____;⑵当直线AB与⊙C相切时,r的取值范围是____;⑶当直线AB与⊙C相交时,r的取值范围是____.2.两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=()A.3B.23C.3D.43.已知⊙O1和⊙O2相外切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径cm.4.两圆既不相交又不相切,半径分别为3和5,则两圆的圆心距d的取值范围是()A.d>8B.0<d≤2C.2<d<8D.0≤d<2或d>85.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有_____个.二:【经典考题剖析】1.Rt△ABC中,∠C=90°,∠AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心1.3cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;③以点C为圆心,2.5cm长为半径的圆与AB相交.上述结论中正确的个数是()A.0个B.l个C.2个D.3个2.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有___个.3.已知⊙O1和⊙O2的半径分别为3crn和5cm,两圆的圆心距是6cm,则这两圆的位置关系是()A.内含B.外离C.内切D.相交4.如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos∠APO的值为()3344....4553ABCD55.如图,已知PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC度数是()A.70°B.40°C.50°D.20°三:【课后训练】1.在△ABC中,∠C=90°,AC=3cm,BC=4cm,CM是中线,以C为圆心,以3cm长为半径画圆,则对A、B、C、M四点,在圆外的有_________,在圆上的有________,在圆内的有________.2.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有_________个.3.已知两圆的半径分别为3cm和4cm,圆心距为1cm,那么两圆的位置关系是()A.相离B.相交C.内切D.外切4.如图,A、B是⊙上的两点,AC是⊙O的切线,∠B=65○,则∠BAC等于()A.35○B.25○C.50○D.65○5.已知两圆的圆心距是3,两圆的半径分别是方程x2-3x+2=0的两个根,那么这两个圆的位置关系是()A.外离B.外切C.相交D.内切6.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面积为9π,求AB的长.7.如图,PA切⊙O于A,PB切⊙O于B,∠APB=90°,OP=4,求⊙O的半径.8.如图,△ABO中,OA=OB,以O为圆心的圆经过AB中点C,且分别交OA、OB于点E、F.(1)求证:AB是⊙O切线;(2)若△ABO腰上的高等于底边的一半,且AB=43,求ECF的长9.如图,CB、CD是⊙O的切线,切点分别为B、D,CD的延长线与⊙O的直径BE的延长线交于A点,连OC,ED.(1)探索OC与ED的位置关系,并加以证明;(2)若OD=4,CD=6,求tan∠ADE的值.10.如图,⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C(1)求线段AB的长(2)求以直线AC为图象的一次函数的解析式COABxy
本文标题:初三数学总复习圆
链接地址:https://www.777doc.com/doc-2655119 .html