您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 六年级数学正比例和反比例的意义性质+练习+总结
1正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。生活中还有哪些成正比例的量?如:A.长方形的宽一定,面积和长成正比例。B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。D.地砖的面积一定,教室地板面积和地砖块数成正比例。2.例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……填表一列火车行驶的时间和路程时间路程时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。根据计算,你发现了什么?相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)2、例2:(1)花布的米数和总价表数量1234567……总价8.216.424.632.841.049.257.4……(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?x/y=k(一定)2PS:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三、两个量的比值一定。相对应的点一定在这条直线上。(作图)练习一、观下图表,回答问题:时间(时)1234567米数2244668811132154()和()是两种相关联的量,()随着()的变化而变化的,()一定,时间和米数是()的量。作图:二、判断下面各题中的两种量是不是成正比例关系,并说理。1、白糖单价一定,白糖数量和总价;2、稻谷的出米率一定,碾成大米重量和稻谷重量;3、一个人的身长和体重;4、长方形的长一定,宽和面积;5、长方形的面积一定,长和宽。三、练习:1、请举出成正比例关系的量。⑴、圆周长与圆半径;⑵、圆面积与圆半径;⑶、正方形的周长与边长。2、说一说成正比例关系的量的变化特征。3正比例和反比例的意义二、成反比例的量成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。用字母表示。如果用字母X和Y表示两种相关联的量,用K表示它们的乘积(一定),反比例关系的式子可以表示为X•Y=K(一定)2.生活中还有哪些成反比例的量?举例(1)大米的质量一定,每袋质量和袋数成反比例。(2)教室地板面积一定,每块地砖的面积和块数成反比例。(3)长方形的面积一定,长和宽成反比例。反比例关系也可以用图像来表示。表示两个量的点不在同一条直线上,点所连接起来是一条曲线。图像特征不要求掌握。4.小结。说一说成反比例关系的量的变化特征。例1、(反比例的意义)下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。这两种量有什么关系?每小时加工零件的个数/个2030406080…加工的时间/时128643…作图:分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20×12=240,30×8=240,40×6=240……而这个积就是这批零件的总个数。通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间=零件的总个数(一定)。所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy=K(一定)。4例2、(判断是否成反比例)总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:每公顷的产量×公顷数=总产量(一定)所以每公顷的产量和公顷数成反比例。例3、(辨析)和一定,一个加数和另一个加数成反比例。分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。例4、(综合题1)(1)长方形的面积一定,长和宽成反比例吗?为什么?(2)长方形的周长一定,长和宽成反比例吗?为什么?分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。(1)因为长方形的长×宽=长方形的面积(一定),所以长和宽成反比例。(2)长方形的周长=(长+宽)×2,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。例5、(综合题2)分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。(1)大米的总千克数一定,每天吃的千克数和天数;(2)每天吃的千克数一定,大米的总千克数和天数;(3)天数一定,大米的总千克数和每天吃的千克数。分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。(1)因为每天吃的千克数×天数=大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。(2)因为天数大米的总千克数=每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。(3)因为每天吃的千克数大米的总千克数=天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。5练习:1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?表格1数量/本13681020……总价/元41224324080……表格2单价/元1.523456……总价/元6812162024……表格3用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:单价/元1.523456……数量/本403020151210……2、用一批纸装订练习本,每本25页,可以装订400本。如果要装订500本,每本有X页。题中()量一定,关系式:()○()=()(一定),()和()成()比例。3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。如果改用边长0.4米的正方形地砖,需要Y块。题中()量一定,关系式:()○()=()(一定),()和()成()比例。4、在圆柱的侧面积、底面周长、高这三种量中当底面周长一定时,()与()成()比例;当高一定时,()与()成()比例;当侧面积一定时,()与()成()比例。5、在被除数、除数、商这三种量中,当()一定时,()与()成正比例;当()一定时,()与()成反比例;6、当a×b=c(a、b、c为三种量,且均不为0)。()一定,()与()成()比例;()一定,()与()成()比例;()一定,()与()成()比例;67、判断。(1)、工作总量一定,工作效率和工作时间成反比例。()(2)、图上距离和实际距离成正比例。()(3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。()(4)、分数的大小一定,它的分子和分母成正比例。()(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。()(6)、两种相关联的量,不成正比例,就成反比例。()(7)订阅《小学数学评价手册》的份数与所需钱数成正比例。()(8)在400米赛跑中,跑步的速度和所用时间成反比例。()(9)工作总量一定,已完成的量和未完成的量成反比例。()(10)正方体的棱长和体积成正比例。()(11)被除数一定,除数和商成反比例。()(12)圆的周长和它的直径成正比例。()8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。(1)、装配一批电视机,每天装配台数和所需的天数()。(2)、正方形的边长和周长()。(3)、水池的容积一定,水管每小时注水量和所用时间()。(4)、房间面积一定,每块砖的面积和铺砖的块数()。(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数()。(6)、在一定时间里,每小时加工零件的个数和加工零件的个数()。9、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?10、某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?(1)把下表填写完整。造纸时间/时1234……造纸吨数/吨1.5……(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。吨数/吨65432101234567时间/时(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图像判断,5小时造纸多少吨?7【试题答案】1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?表格1数量/本13681020……总价/元41224324080……14=4,312=4,624=4……因为数量总价=单价(一定),所以单价一定时,总价和数量成正比例。表格2单价/元1.523456……总价/元6812162024……5.16=4,28=4,312=4……因为单价总价=数量(一定),所以数量一定时,总价和单价成正比例。表格3用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:单价/元1.523456……数量/本403020151210……1.5×40=60,2×30=60,4×15=60……因为单价×数量=总价(一定),所以总价一定时,单价和数量成反比例。2、用一批纸装订练习本,每本25页,可以装订400本。如果要装订500本,每本有X页。题中(纸的总页数)量一定,关系式:(每本页数)×(装订本数)=(纸的总页数)(一定),(每本页数)和(装订本数)成(反)比例。3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。如果改用边长0.4米的正方形地砖,需要Y块。题中(会客室地面面积)量一定,关系式:(每块砖的面积)×(砖的块数)=(会客室地面面积)(一定),(每块砖的面积)和(砖的块数)成(反)比例。4、在圆柱的侧面积、底面周长、高这三种量中当底面周长一定时,(侧面积)与(高)成(正)比例;当高一定时,(侧面积)与(底面周长)成(正)比例;当侧面积一定时,(底面周长)与(高)成(反)比例。5、在被除数、除数、商这三种量中
本文标题:六年级数学正比例和反比例的意义性质+练习+总结
链接地址:https://www.777doc.com/doc-2673270 .html