您好,欢迎访问三七文档
ArxyO4.1.1圆的标准方程复习引入探究新知应用举例课堂小结课后作业复习引入问题1:平面直角坐标系中,如何确定一个圆?圆心:确定圆的位置半径:确定圆的大小问题2:圆心是A(a,b),半径是r的圆的方程是什么?xyOCM(x,y)rbyax22)()((x-a)2+(y-b)2=r2三个独立条件a、b、r确定一个圆的方程.设点M(x,y)为圆C上任一点,则|MC|=r。探究新知问题:是否在圆上的点都适合这个方程?是否适合这个方程的坐标的点都在圆上?222)()(rbyax点M(x,y)在圆上,由前面讨论可知,点M的坐标适合方程;反之,若点M(x,y)的坐标适合方程,这就说明点M与圆心的距离是r,即点M在圆心为A(a,b),半径为r的圆上.想一想?xyOCM(x,y)圆心C(a,b),半径r特别地,若圆心为O(0,0),则圆的方程为:222)()(rbyax标准方程222ryx知识点一:圆的标准方程1.说出下列圆的方程:(1)圆心在点C(3,-4),半径为7.(2)经过点P(5,1),圆心在点C(8,-3).2.说出下列方程所表示的圆的圆心坐标和半径:(1)(x+7)2+(y4)2=36(2)x2+y24x+10y+28=0(3)(xa)2+y2=m2应用举例特殊位置的圆的方程:圆心在原点:x2+y2=r2(r≠0)圆心在x轴上:(xa)2+y2=r2(r≠0)圆心在y轴上:x2+(yb)2=r2(r≠0)圆过原点:(xa)2+(y-b)2=b2(b≠0)圆心在x轴上且过原点:(xa)2+y2=a2(a≠0)圆心在y轴上且过原点:x2+(y-b)2=b2(b≠0)圆与x轴相切:(xa)2+(y-b)2=a2+b2(a2+b2≠0)圆与y轴相切:(xa)2+(y-b)2=a2(a≠0)圆与x,y轴都相切:(xa)2+(y±a)2=a2(a≠0)例1写出圆心为,半径长等于5的圆的方程,并判断点,是否在这个圆上。)3,2(A)7,5(1M)1,5(2M解:圆心是,半径长等于5的圆的标准方程是:)3,2(A把的坐标代入方程左右两边相等,点的坐标适合圆的方程,所以点在这个圆上;)7,5(1M25)3()2(22yx1M1M典型例题)1,5(2M2M2M把点的坐标代入此方程,左右两边不相等,点的坐标不适合圆的方程,所以点不在这个圆上.25)3()2(22yx跟踪训练已知两点M(3,8)和N(5,2).(1)求以MN为直径的圆C的方程;(2)试判断P1(2,8),P2(3,2),P3(6,7)是在圆上,在圆内,还是在圆外?解:(1)法一:设圆心C(a,b),半径为r,则由C为MN的中点得a=3+52=4,b=8+22=5,由两点间的距离公式得r=|CM|=4-32+5-82=10,∴所求圆的方程为(x-4)2+(y-5)2=10.知识探究二:点与圆的位置关系探究:在平面几何中,如何确定点与圆的位置关系?MO|OM|r|OM|=rOMOM|OM|r点在圆内点在圆上点在圆外(x0-a)2+(y0-b)2r2;(x0-a)2+(y0-b)2=r2(x0-a)2+(y0-b)2r2(x0-a)2+(y0-b)2r2时,点M在圆C外;(x0-a)2+(y0-b)2=r2时,点M在圆C上;(x0-a)2+(y0-b)2r2时,点M在圆C内.点与圆的位置关系:知识点二:点与圆的位置关系待定系数法解:设所求圆的方程为:因为A(5,1),B(7,-3),C(2,8)都在圆上所求圆的方程为例2⊿ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程。222222222)8()2()3()7()1()5(rbarbarba,.53,2rba25)3()2(22yx222)()(rbyax例3己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.圆经过A(1,1),B(2,-2)解2:设圆C的方程为222()(),xaybr∵圆心在直线l:x-y+1=0上22222210(1)(1)(2)(2)ababrabr325abr22(2)25.Cy圆心为的圆的标准方程为(x+3)待定系数法解:∵A(1,1),B(2,-2)例3己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.3121(,),3.2221ABABDk线段的中点113().232ABx线段的垂直平分线CD的方程为:y+即:x-3y-3=0103,,3302xyxlxyy联立直线CD的方程:解得:∴圆心C(-3,-2)22(13)(12)5.rAC22(2)25.Cy圆心为的圆的标准方程为(x+3)练习2.根据下列条件,求圆的方程:(1)求过两点A(0,4)和B(4,6),且圆心在直线x-y+1=0上的圆的标准方程。(2)圆心在直线5x-3y=8上,又与两坐标轴相切,求圆的方程。(3)求以C(1,3)为圆心,且和直线3x-4y-7=0相切的直线的方程。1.点(2a,1a)在圆x2+y2=4的内部,求实数a的取值范围.思考例已知圆的方程是x2+y2=r2,求经过圆上一点的切线的方程。),(00yxMXY0),(00yxM解:)(,00xxkyy设切线方程为如图,00xykOMOM的斜率为半径00,yxkOM所以垂直于圆的切线因)(0000xxyxyy切线方程为202000,yxyyxx整理得,22020ryx200ryyxx所求圆的切线方程为例3如图所示,一座圆拱桥,当水面在l位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?【分析】建立坐标系求解.【解】以圆拱桥拱顶为坐标原点,以过拱顶的竖直直线为y轴,建立直角坐标系,如图所示.设圆心为C,水面所在弦的端点为A、B,则由已知得A(6,-2).设圆的半径为r,则C(0,-r),即圆的方程为x2+(y+r)2=r2.①将点A的坐标(6,-2)代入方程①得36+(r-2)2=r2,∴r=10.∴圆的方程为x2+(y+10)2=100.②当水面下降1米后,可设点A′的坐标为(x0,-3)(x0>0),将A′的坐标(x0,-3)代入方程②得x0=51,∴水面下降1米后,水面宽为2x0=251米.【点评】本题是用解析法解决实际问题.跟踪训练3如图(1)所示是某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱CD的高度(精确到0.01m).解:建立图(2)所示的直角坐标系,则圆心在y轴上.设圆心的坐标是(0,b),圆的半径是r,那么圆的方程是x2+(y-b)2=r2.下面用待定系数法求b和r的值.因为P、B都在圆上,所以它们的坐标(0,4)、(10,0)都是这个圆的方程的解.于是得到方程组02+4-b2=r2102+0-b2=r2,解得b=-10.5,r2=14.52.所以,这个圆的方程是x2+(y+10.5)2=14.52.把点C的横坐标x=-2代入这个圆的方程,得(-2)2+(y+10.5)2=14.52.y+10.5=14.52-4(因为C的纵坐标y0,所以取正值),于是y=14.52-4-10.5≈3.86m.∴支柱CD的高度为3.86m.1.圆的标准方程222)()(rbyax(圆心C(a,b),半径r)2.点与圆的位置关系3.求圆的标准方程的方法:①待定系数法②几何法小结
本文标题:圆的标准方程课件
链接地址:https://www.777doc.com/doc-2673639 .html