您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 股票报告 > 关于Markov过程在股票市场中的应用
HUNANUNIVERSITY论文题目随机过程论文学生姓名汤义成学生学号20101910113专业班级统计一班学院名称金融与统计学院关于Markov过程在股票市场中的应用摘要:本文以上证指数涨跌幅度的历史数据为例,运用Markov过程理论,对股价综合指数的涨跌幅度进行状态分类,并对股票市场运行的周期进行分析。关键词:Markov过程股价综合指数股价的运动受到许多因素的影响,如宏观基本面的变化、短期消息面的刺激,随着市场供应关系的转换而上升或下跌,呈现随机过程的特征。分析股价指数在一定时期的运行规律,寻找其运行的特征和涨跌的时间周期,对其后的发展做出短期预测,对于投资者具有极其重要的意义。一、Markov过程1.数学模型的建立设Xn为第n个交易日股价综合指数对比前一个交易日的收盘指数涨跌幅度的百分数,假设股价指数在某一日的涨跌仅与前一日的收盘指数有关,而与股价指数过去的运行态势无关,即该过程具有Markov性。时间参数以一个交易日为单位,此时{Xn,n=0,1…}为离散时间Markov链。当Xn<-1时,对应的状态为1,即下跌;-1<Xn<1时,对应的状态为2,即小幅振荡调整;Xn>1时,对应的状态为3,即上涨。给定Xn在状态i时Xn+1处于状态j的条件概率P{Xn+1=j|Xn=i}称作是Markov链的一步转移概率,记作Pijn,n+1。当这一概率与n无关时称该Markov链有平稳转移概率,并记之为Pij,其转移概率矩阵P为P=P■P■P■P■P■P■P■P■P■具有如下性质(1)pij>0(i,j=1,2,3)(2)■p■=1(i=1,2,3)转移概率矩阵P描述了由状态i出发,下一时刻转移到状态j的概率分布状况,可对股价综合指数未来的涨跌做出短期预测。2.Markov链的周期性设由状态i出发首次到达状态j的时间为,而由状态i出发下一时刻到达状态j的一步转移概率为Pik。当K=j时,Nij=1;当K≠j时,到达状态平均所需的时间为Nij,建立方程组N■=1+■P■·N■(i,j=1,2,3)(1)求解方程组可得由状态1(下跌)到状态3(上涨)所需的平均天数N13和由状态3(上涨)到状态1(下跌)平均所需的天数N31,N13+N31,+给出了由下跌到上涨,再由上涨到下跌平均所需时间,即系统运行的周期。根据上证指数2010年12月31日至2011年5月19日91个交易日收盘指数每日的涨跌幅度数据资料,得转移概率矩阵p=0.080.770.150.150.700.150.190.560.25利用周期性的分析及公式(1)可得方程组①N13=1+0.08N13+0.747N23N23=1+0.15N13+0.70N23同理解方程组②N31=1+0.56N21+0.25N31N21=1+0.70N21+0.15N31即股价综合指数完成一个周期平均需12.76个交易日。通过以上分析,可得以下结论(1)上海股票市场在2010年底到2011年5月份91个交易日,状态共转移了90次,进入状态2的次数最多,为62次,进入其他状态的次数为15(状态3)、13次(状态1),说明股票市场在大部分时间内为小幅振荡调整的状况。(2)从转移矩阵中可看出,无论从哪个状态出发经一步转移后,进入状态2(小幅振荡调整)的概率较大,而进入状态3(上涨)、状态1(下跌)的概率相对较小。(3)根据方程组①②可知,由跌到涨平均需6.67个交易日,由涨到跌平均需6.09个交易日,说明上证指数下跌的速度略快于上升的速度(4)上证指数由状态1(下跌)到状态3(上涨),再由状态3(上涨)到状态1(下跌)平均需12.76个交易日,说明在该段时间股票市场波动较为平稳。参考文献:[1]S·M·劳斯.随机过程[M].北京:中国统计出版社,19972]耿素云,张立昂.概率统计[M].北京:北京大学出版社,1998[3]陈共.证劵学[M].北京:中国人民大学出版社,1994
本文标题:关于Markov过程在股票市场中的应用
链接地址:https://www.777doc.com/doc-2674679 .html