您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 细胞生物学知识点总结
细胞生物学目录第一章绪论第二章细胞生物的研究方法和技术第三章质膜的跨膜运输第四章细胞与环境的相互作用第五章细胞通讯第六章核糖体和核酶第七章线粒体和过氧化物酶体第八章叶绿体和光合作用第九章内质网,蛋白质分选,膜运输第十章细胞骨架,细胞运动第十一章细胞核和染色体第十二章细胞周期和细胞分裂第十三章胚胎发育和细胞分化第十四章细胞衰老和死亡第一章绪论1.原生质体:被质膜包裹在细胞内的所有的生活物质,包括细胞核和细胞质细胞质:细胞内除核以外的原生质,即细胞中细胞核以外和细胞膜以内的原生质部分原生质体:除去细胞壁的细胞2.结构域:生物大分子中具有特异结构和独立功能的区域3.装配模型:模板组装,酶效应组装,自组装4.五级装配:第一级,小分子有机物的形成第二级,小分子有机物组装成生物大分子第三级,由生物大分子进一步组装成细胞的高级结构第四级,由生物大分子组装成具有空间结构和生物功能的细胞器第五级,由各种细胞器组装成完整细胞6.支原体:目前已知的最小的细胞第二章细胞生物的研究方法和技术1.显微镜技术:光镜标本制备技术、2.光镜标本制备技术步骤:样品固定、包埋与切片、染色3.电子显微镜种类:透射电子显微镜,扫描电镜,金属投影,冷冻断裂和冷冻石刻电镜,复染技术,扫描隧道显微镜4.细胞化学技术:酶细胞化学技术,免疫细胞化学技术,放射自显影5.细胞分选技术:流式细胞术6.分离技术:离心技术,层析技术,电泳技术第三章质膜的跨膜运输1.细胞功能:外界与通透性障碍,组织和功能定位,运输作用,细胞间通讯,信号检测2.膜化学组成:膜脂,膜糖,膜蛋白3.膜脂的三个种类:磷脂,糖脂,胆固醇4.脂质体用途:用作生物膜的研究模型,作为生物大分子与药物的运载体5.膜糖功能:细胞与环境的相互作用,接触抑制,信号转导,蛋白质分选,保护作用。6.膜蛋白类型:整合蛋白,外周蛋白,脂锚定蛋白7.膜蛋白功能:运输蛋白,酶,连接蛋白,受体(信号接受和传递)8.不对称性的研究方法:冰冻断裂复型,冰冻蚀刻9.膜流动性研究方法:质膜融合,淋巴细胞的成斑成帽效应,荧光漂白恢复技术10.膜流动性的重要性:酶活性,信号转导,物质运输,能量转换,细胞周期11.影响膜脂流动性的因素:脂肪酸链,胆固醇,卵磷脂/鞘磷脂比值12.影响膜蛋白流动的因素:整合蛋白,膜骨架,细胞外基因,相邻细胞,细胞外配体、抗体、药物大分子13.膜骨架的主要蛋白:血影蛋白,肌动蛋白和原肌球蛋白,带4.1蛋白,锚定蛋白14.转运蛋白质包括:载体蛋白,通道蛋白15.协同运输的方向:同向协同,反向协同第四章细胞与环境的相互作用1.细胞表面结构:细胞外被、膜骨架、胞质溶胶2.细胞外被功能:连接,细胞保护,屏障3.糖萼:由细胞表面的碳水化合物形成的质膜保护层,又称为多糖包被。4.细胞壁成分:纤维素,半纤维素,果胶质,木质素,糖蛋白5.细胞外基质成分:蛋白聚糖(成分是糖胺聚糖),结构蛋白,黏着蛋白6.透明质酸:细胞外基质中游离存在,在结缔组织中起强化、弹性和润滑作用,具有抗压能力7.胶原的功能:是骨、腱和皮肤组织中的主要蛋白,起细胞外基因骨架作用;促进细胞生长;维持并诱导细胞分化。8.弹性蛋白:是弹性纤维的主要成分,富含甘氨酸和谷氨酸。9.黏着蛋白的种类:纤粘连蛋白FN,层粘连蛋白LN10.FN功能:介导细胞黏着,是细胞外基质的组织者,影响细胞的迁移11.LN功能:是基膜的主要结构;介导细胞黏着于胶原,使之发生铺展;影响细胞迁移、生长、分化。12.基膜的组成成分:层粘连蛋白,巢蛋白,Ⅳ型胶原,硫酸肝素糖蛋白13.基膜作用:对组织起支持作用,调节分子通透性,作为细胞运动的选择性通透屏障14.细胞识别中起作用的事糖被,引起细胞黏着的是膜蛋白15.细胞识别系统:抗原—抗体的识别,酶与底物的识别,细胞间的识别,酶与信号分子的识别16.识别反应三类型:内吞,细胞黏着,信号反应17.钙黏着蛋白能通过它们所在的细胞类型进行区别:E-钙黏着蛋白(表皮),N-钙黏着蛋白(神经),P-钙黏着蛋白(胎盘)18.斑块连接分为:黏着连接,桥粒19.黏着连接有两种:黏着带:细胞-细胞间黏着斑:细胞与细胞外基质20.参与黏着连接的组分:钙黏着蛋白,肌动蛋白,细胞质斑21.黏着斑组分:整联蛋白,纤连蛋白22.桥粒分为:桥粒(钙黏着蛋白),半桥粒(整联蛋白)细胞是通过中间纤维锚定在细胞骨架上。23.通讯连接:一种特殊的细胞连接,位于特化的具有细胞间通讯作用的细胞。方式:间隙连接,胞间连接,化学突触第五章细胞通讯1.细胞通讯的一般过程:识别,信号转导2.细胞应答包括:酶活性的变化,基因表达的变化,细胞骨架,通透性的变化,细胞死亡程序的变化3.细胞通讯的方式:信号分子,相邻细胞表面分子的黏着,细胞与细胞外基质连接4.细胞通讯的基本过程:①信号分子的合成②信号分子的释放③信号分子的传递④靶细胞与信号分子识别⑤胞外信号的跨膜转导⑥靶分子的激活和细胞应答的开始5.信号分子分为:水溶性,脂溶性6.信号分子与细胞通讯:糖分泌,化学突触,内分泌7.信号分子种类:激素(内分泌信号),局部介质(糖分泌信号),神经递质(神经元信号)8.受体存在位置:细胞表面受体(水溶性),细胞内部受体(脂溶性)9.细胞内部受体的基本结构:C端配体结合结构域,中间结构域,N端转录激活结构域10.细胞表面受体主要种类:离子通道偶联受体,G蛋白偶联受体,酶连受体。11.跨膜受体:12.研究细胞表面受体的方法:单克隆抗体标记法,亲和标记法13.两种信号转导类型:G-蛋白,酶活性。14.信号转导包括:磷酸化和去磷酸化15.级联反应:16.第二信使特点:仅在细胞内部起作用,能启动或调节细胞内稍晚的反应,五种(cAMP,DG,IP3,cGMP,Ca2+)17.细胞质膜上最多,最重要的信号转导系统:G-蛋白连接的受体18.信号转导系统的三部分:七个螺旋跨膜受体,G-蛋白,效应物19.G-蛋白连接的受体的两个主要结构域:外部结构域(识别信号分子),内部结构域(连接到G蛋白,调控某种结合酶的活性,产生第二信使)20.效应物:接收信息后能够产生第二信使的物质21.G蛋白的α亚基的三个功能位点:GTP结合位点,GTP酶活性位点,ATP核糖化位点22.PKA中,第二信使cAMP的类型:激活型,抑制型23.激活型系统的组成:Rs激活型受体,Gs激活型的G蛋白,效应物24.抑制型系统的组成:抑制型受体,抑制型G蛋白(Giprotein),效应物25.PKA信号途径:产生cAMP,信号放大(蛋白激酶A的活化),信号的解除和抑制26.被激活的PKA作用方式:使关键把酶磷酸化,调节基因表达27.毒素影响cAMP信号途径:霍乱毒素(choleratoxin),百日咳毒素(pertussistoxin)28.信号系统的组成:受体,Gq蛋白,PLC-β(激活PLC,在PKA途径中激活AC)29.PKC途径的第二信使:双信号(DAG和IP3的产生)30.细胞如何调控Ca2+浓度?①细胞中存在Ca2+泵可帮助细胞进行Ca2+调控②细胞质膜的一侧有和Ca2+结合的位点,一次可结合两个Ca2+,结合后使酶激活,并结合上一分子的ATP,伴随ATP的水解和酶被磷酸化,Ca2+泵构型发生改变,结合Ca2+的一面转到细胞外侧,由于结合亲和力低的Ca2+被释放,此时酶发生去磷酸化,构型恢复到静止状态。③当细胞内Ca2+浓度升高,Ca2+同钙调蛋白结合,形成复合物,该复合物同抑制区结合,释放激活位点,泵开始工作。当浓度低时,CaM同抑制区脱离,抑制区又同激活位点结合,使泵处于静止状态。④另一种情况。抑制区的磷酸化从而失去抑制作用,反之,起抑制作用。32.信号的终止:DAG的水解,IP3的水解,Ca2+的水解33.酶连接受体的特点:不需要G蛋白,而是通过受体自身的蛋白激酶的活性来完成信号跨膜转换。该通过对信号反应慢。与细胞分裂有关34.酶连受体的结构:配体结合区,像PK的区域,催化区域35.酶连受体类型:受体酪氨酸激酶,受体鸟苷环化酶,受体酪氨酸磷酸酶,受体丝氨酸激酶,酪氨酸激酶偶联受体。内源酶促活性受体36.Ras的信号放大作用:蛋白活性改变,基因表达改变37.趋同(convergence):不同的信号因子作用于不同的受体,但能整合激活一个共同的效应物。(信号不同,受体不同,激活产物相同)趋异(divergence):相同配体,能转换激活许多不同的效应物,引起细胞不同反应。(信号相同,受体相同,效应不同)交谈(crosstalk):不同信号转导途径间的相互影响。(信号分子不同,受体不同,效应相互交谈、影响。)38.信号终止的途径:信号分子的水解,受体钝化,受体的减量调节第六章核糖体和核酶1,核糖体的rRNA基因:选择性扩增,转录,前体rRNA的加工和修饰,5SrRNA的合成和加工2,前体rRNA加工修饰时,甲基化修饰主要部位在核糖第二位羟基上。3,RNA聚合酶Ⅰ参与rRNA三大亚基的转录4,5SrRNA的合成和加工时,在核仁外进行,通过聚合酶Ⅲ转录5,小亚基的rRNA和蛋白质的装配关系:组成核糖体的蛋白质和rRNA在大小亚基中均有一定的空间排布6,核糖体在组装过程中,蛋白质与RNA的结合具有先后层次。根据rRNA结合的顺序,将核糖体蛋白分为两种:初级结合蛋白,次级结合蛋白7,大肠杆菌的核糖体与叶绿体核糖体亚基重组后具有功能,线粒体的核糖体亚基同原核生物核糖体亚基相互重组后核糖体没有功能。8,核糖体与mRNA结合的位点:SD序列9,嘌呤毒素(puromycin)对蛋白质合成有抑制作用10,N端规则(N-endrule):多肽链N端特异性的氨基酸与半衰期有关11,真核生物中的小分子RNA种类:snRNA(核内小RNA),scRNA(胞质小RNA)12,反义snRNA在前体RNA加工中的作用:与特定的蛋白质形成核小核糖核蛋白,在真核生物的前体rRNA加工时候需要大量的snRNA的帮助,snRNA与rRNA进行互补形成的RNA-RNA双链部分可作为前体rRNA进行加工的标志13,核剪接:发生在细胞核中,从前体mRNA中切除内含子,加工成熟的mRNA被运送到细胞质。遵循GU-AU规则14,Ⅰ组内含子剪接特点:需要游离的鸟苷,存在于低等真核生物细胞核rRNA基因和真菌线粒体基因中。基因:前体rRNA、mRNA、tRNA15,Ⅱ组内含子剪接特点:内含子转录后形成6个发夹环,遵循GU-AU规则,不需要snRNA参与,不形成剪接体,形成套索,存在的细胞器:线粒体和叶绿体。基因:前体mRNA第七章线粒体和过氧化物酶体1,外膜功能:半透性。参与磷脂的合成,将线粒体基质中进行彻底氧化的物质先进行初步分解2,内膜功能:高度不通透。ATP的合成和电子传递链参与氧化磷酸化。转运蛋白参与。合成酶类:合成DNA、RNA、蛋白质3,膜间隙功能:建立电化学梯度4,细胞内Ca2+作用?细胞如何调控Ca2+作用?(三个部位)5,(12分)蛋白质合成后如何转运到细胞的不同部位?(三条途径:内质网高尔基体溶酶体,线粒体叶绿体,核内)6,Ca2+有哪些功能?(膜内:Ca2+泵,Na+-Ca2+交换器,膜外:内质网Ca2+泵,线粒体,细胞质基质中钙调蛋白)7,细胞质中的核糖体在合成蛋白质时有两种可能的存在状态:游离核糖体(freeribosome),膜结合核糖体(membrane-boundribosome)8,蛋白质的两种转运模型:翻译后转运(post-translationaltranslation)、共翻译转运(Co-translationaltranslation)9,freeribosome:前导肽leadingpeptide,转运肽transitpeptide,导向序列targetingsequence,导向信号targetingsignal10.membrane-boundribosome:信号序列,信号肽11,线粒体转运肽转运蛋白质的特点:受体,接触点,去折叠,消耗能量,转运肽酶,分子伴侣12,前导肽的特异性:具有细胞结构的特异性,前导肽的不同片段含有不同的信息13,如何证明信号肽引导蛋白
本文标题:细胞生物学知识点总结
链接地址:https://www.777doc.com/doc-2681140 .html