您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > AI人工智能 > 人工智能作业答案(2)
人工智能作业答案(2)第三章确定性推理什么是推理?它有哪些分类方法?P74所谓推理是指按照某种策略从已知事实出发去推出结论的过程。知识推理是指在计算机或智能机器中,在知识表达的基础上,利用形式化的知识模型,进行机器思维求解问题,实现状态转移的智能操作序列。根据知识表示方式分类:“图搜索”方法、“逻辑论证”方法;根据推理算法与推理步骤分类;根据启发式与非启发式分类;根据逻辑基础分类:演绎推理、归纳推理、默认(缺省)推理;根据知识的确定性分类:确定性推理、非确定性推理;根据推理过程的单调性分类:单调推理、非单调推理。推理中的冲突消解策略有哪些?P82冲突消解的基本思想是:对可用知识排序。具体地讲,包括以下策略:a)特殊知识优先b)新鲜知识优先c)差异性大的知识优先d)领域特点优先e)上下文关系优先f)前提条件少者优先什么是置换?什么是合一?什么是最一般合一?P88-89置换:在谓词表达式中用置换项置换变量。合一:寻找项对变量的置换,以使表达式一致。最一般合一(mgu):通过置换最少的变量以使表达式一致,这个置换就叫最一般合一。判断下列公式是否可以合一,若可合一,则求出其最一般合一。(1)P(a,b),P(x,y){a/x,b/y}(2)P(f(x),b),P(y,z){f(x),b/z}(3)P(f(x),y),P(y,f(b)){b/x,f(b)/y}(4)P(f(y),y,x),P(x,f(a),f(b)){f(y)/x,f(a)/y,f(b)/x}不可合一(5)P(x,y),P(y,x){x/y,y/x}不可合一把下列谓词公式化成子句集:(1)(x)(y)(P(x,y)∧Q(x,y)){P(x,y),Q(z,w)}(2)(x)(y)(P(x,y)→Q(x,y)){┐P(x,y)∨Q(x,y)}(3)(x)(y)(P(x,y)∨(Q(x,y)→R(x,y)))(x)(y)(P(x,y)∨(┐Q(x,y)∨R(x,y)))(x)(P(x,f(x))∨┐Q(x,f(x))∨R(x,f(x))){P(x,f(x))∨┐Q(x,f(x))∨R(x,f(x))}(4)(x)(y)(z)(P(x,y)→Q(x,y)∨R(x,z))(x)(y)(z)(┐P(x,y)∨Q(x,y)∨R(x,z))(x)(y)(┐P(x,y)∨Q(x,y)∨R(x,f(x,y))){┐P(x,y)∨Q(x,y)∨R(x,f(x,y))}(5)(x)(y)(z)(u)(v)(w)(P(x,y,z,u,v,w)∧Q(x,y,z,u,v,w)∨┐R(x,z,w))(z)(v)(P(a,b,z,f(z),v,g(z,v))∨┐R(a,z,g(z,v))∧Q(a,b,z,f(z),v,g(z,v))∨┐R(a,z,g(z,v))){P(a,b,z,f(z),v,g(z,v))∨┐R(a,z,g(z,v)),Q(a,b,z,f(z),v,g(z,v))∨┐R(a,z,g(z,v))}鲁宾逊归结原理的基本思想是什么?P99鲁宾逊归结原理的基本思想是:否定结论,加入前提子句集,应用归结原理,是否能导出空子句,若存在,证明否定结论错误,即原结论得证。设已知:(1)如果x是y的父亲,y是z的父亲,则x是z的祖父;(2)每个人都有一个父亲。试用归结演绎推理证明:对于某人u,一定存在一个人v,v是u的祖父。已知:(x)(y)(z)(FATHER(x,y)∧FATHER(y,z)→GRANDFATHER(x,z))(s)(f)FATHER(f,s)证明:目标否定:(u)┐(v)GRANDFATHER(v,u)化为子句集:{┐GRANDFATHER(v,u)}事实子句集:┐(FATHER(x,y)∧FATHER(y,z))∨GRANDFATHER(x,z){┐FATHER(x,y)∨┐FATHER(y,z)∨GRANDFATHER(x,z),FATHER(f(s),s)}反演树证明:┐GRANDFATHER(v,u)┐FATHER(x,y)∨┐FATHER(y,z)∨GRANDFATHER(x,z){v/x,u/z}┐FATHER(v,y)∨┐FATHER(y,u)FATHER(f(s),s){f(y)/v,y/s}┐FATHER(y,u)FATHER(f(s),s){f(s)/y,s/u}NIL3.19题略A:赵钱至少一人THIEF(赵)∨THIEF(钱)B:钱孙至少一人THIEF(钱)∨THIEF(孙)C:孙李至少一人无关┐THIEF(孙)∨┐THIEF(李)D:赵孙至少一人无关┐THIEF(赵)∨┐THIEF(孙)E:钱李至少一人无关┐THIEF(钱)∨┐THIEF(李)┐THIEF(赵)∨┐THIEF(孙)THIEF(赵)∨THIEF(钱)┐THIEF(孙)∨THIEF(钱)THIEF(钱)∨THIEF(孙)THIEF(钱)┐THIEF(钱)∨┐THIEF(李)THIEF(钱)┐THIEF(李)3.20题略┐COUPLES(Zhou,Wang)┐COUPLES(Zhou,Qian)┐COUPLES(Li,Chen)┐COUPLES(Xu,Chen)、┐COUPLES(Zhou,Chen)、┐COUPLES(Wu,Chen)、┐COUPLES(Xu,Wu)、┐COUPLES(Zhou,Wu)、┐COUPLES(Zhou,Xu)、WOMAN(Li)、WOMAN(Xu)、WOMAN(Zhou)、WOMAN(Qian)MAN(Chen)、MAN(Wu)、MAN(Wang)、MAN(Shun)COUPLES(Zhou,Chen)∨┐COUPLES(Zhou,Chen)矛盾COUPLES(Zhou,Wu)∨┐COUPLES(Zhou,Wu)矛盾COUPLES(Zhou,Wang)∨┐COUPLES(Zhou,Wang)矛盾COUPLES(Zhou,Shun)COUPLES(Li,Chen)∨┐COUPLES(Li,Chen)矛盾COUPLES(Li,Wu)不确定COUPLES(Li,Wang)不确定COUPLES(Xu,Chen)∨┐COUPLES(Xu,Chen)矛盾COUPLES(Xu,Wu)∨┐COUPLES(Xu,Wu)矛盾COUPLES(Xu,Wang)不确定COUPLES(Qian,Chen)3.22设有子句集:{┐P(x)∨Q(x,b),P(a)∨┐Q(a,b),┐Q(a,f(a)),┐P(x)∨Q(x,x)}分别用各种归结策略求出其归结式。实际上无论采用哪种策略都是如此:(作者选其为此类习题不适合)3.23设已知:(1)能阅读的人(动物)是识字的;(2)海豚不识字;(3)有些海豚是聪明的。分别用线性输入策略,祖先过滤策略证明:有些很聪明的人(动物)不识字。┐P(x)∨Q(x,b)P(a)∨┐Q(a,b)┐Q(a,f(a))┐P(x)∨Q(x,x)NIL事实:(x)(CANREAD(x)→SHIZHI(x))(y)(HAITUN(y)→┐SHIZHI(y))(z)(HAITUN(z)∧CLEVER(z))目标否定:┐(u)(CLEVER(u)∧┐SHIZHI(u))(u)┐(CLEVER(u)∧┐SHIZHI(u))(u)(┐CLEVER(u)∨SHIZHI(u))子句集:{┐CANREAD(x)∨SHIZHI(x),┐HAITUN(y)∨┐SHIZHI(y),HAITUN(a),CLEVER(a),┐CLEVER(u)∨SHIZHI(u)}线性输入策略祖先过滤策略┐CANREAD(x)∨SHIZHI(x)┐HAITUN(y)∨┐SHIZHI(y)HAITUN(a)┐CLEVER(u)∨SHIZHI(u)┐SHIZHI(a)CLEVER(a)┐HAITUN(y)∨┐CLEVER(y)SHIZHI(a)┐CLEVER(a)NIL┐CLEVER(a)┐HAITUN(a)NILNIL┐HAITUN(y)∨┐SHIZHI(y)HAITUN(a)┐CLEVER(u)∨SHIZHI(u)┐SHIZHI(a)CLEVER(a)┐CLEVER(a)NIL3.27设已知事实为((P∨Q)∧R)∨(S∧(T∨U))F规则为S→(X∧Y)∨Z试用正向演绎推理推出所有可能的目标子句。P∨Q∨X∨ZP∨Q∨Y∨ZP∨Q∨T∨UR∨X∨ZR∨Y∨ZR∨T∨U((P∨Q)∧R)∨(S∧(T∨U))(P∨Q)∧RS∧(T∨U)P∨QRST∨UPQTUSX∧YZXY3.28事实:GAO(Zhang)、GAO(Wang)、GAO(Li)R1:┐HUA(x1)→DENG(x1)R3:DENG(x4)→┐LIKE(x4,雨)R4:┐LIKE(x5,雪)→┐HUA(x5)R5:LIKE(Li,x6)→┐LIKE(Wang,x6)R6:┐(┐LIKE(Zhang,x7))→LIKE(Li,x7)LIKE(Zhang,x7)→LIKE(Li,x7)LIKE(Zhang,雨)、LIKE(Zhang,雪)目标:(v)(GAO(v)∧DENG(v)∧┐HUA(v))GAO(v)∧DENG(v)∧┐HUA(v)GAO(v)DENG(v)┐HUA(v)┐LIKE(v,雪)┐HUA(x5)LIKE(Li,雪)LIKE(Zhang,雪)GAO(Wang)┐LIKE(Wang,x6)LIKE(Li,x7)R4{v/x5}{v/Wang}{v/Wang,雪/x6}R5{雪/x7}R6
本文标题:人工智能作业答案(2)
链接地址:https://www.777doc.com/doc-27178 .html