您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 人教版八年级数学下册难题
1.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()2.在如图所示的梯形ABCD中,AD∥BC,AD=5,BC=11,①中A1B1是连接两腰中点的线段,易知A1B1=8,②中A1B1,A2B2是连接两腰三等分点且平行于底边的线段,可求出A1B1+A2B2的值…,照此规律下去,③中A1B1,A2B2,…A10B10是连接两腰十一等分点且平行于底边的线段,则A1B1+A2B2+…+A10B10的值为()3.等腰梯形的高是4,对角线与下底的夹角是45°,则该梯形的中位线是()4.如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C⇒D⇒A⇒B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有个.5.如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()6.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△MIC,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEM的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.7.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=28.如图,图中含有三个正方形ABCD,DEOF和PQGH,则正方形PQGH与正方形DEOF的周长之比为。9.如图,是一个菱形衣挂的平面示意图,每个菱形的边长为16cm,当锐角∠CAD=60°时,把这个衣挂固定在墙上,两个钉子之间的距离(CE两点之间的距离)是55.4cm.(精确到0.1cm)10.如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)试探索四边形EGFH的形状,并说明理由;(2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明;(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并证明你的结论.11.如图(a)所示,四边形ABCD是等腰梯形,AB∥DC、由4个这样的等腰梯形可以拼出图(b)所示的平行四边形.(1)求四边形ABCD四个内角的度数;(2)试探究四边形ABCD四条边之间存在的等量关系,并说明理由(思路提示:等腰梯形在同一底上的两个角相等,显然可以发现上底与腰相等);(3)现有图(b)中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.(和你的同学交流)12.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=20cm,CD=25cm.动点P、Q同时从A点出发:点P以3cm/s的速度沿A⇒D⇒C的路线运动,点Q以4cm/s的速度沿A⇒B⇒C的路线运动,且P、Q两点同时到达点C.(1)求梯形ABCD的面积;(2)设P、Q两点运动的时间为t(秒),四边形APCQ的面积为S(cm2),试求S与t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,是否存在这样的t,使得四边形APCQ的面积恰为梯形ABCD的面积的25?若存在,求出t的值;若不存在,请说明理由.13.已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合).(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;(3)如图③,分别在AD、BC上取点F、C′,使得∠APF=∠BPC′,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△PBC′沿PC′翻折得到△PEC′,连接FC′,取FC′的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.如图,已知一次函数y=kx+b(k、b为常数)的图象与反比例函数y=mx(m为常数,m≠0)的图象相交于点A(1,3)、B(n,-1)两点.(1)求上述两个函数的解析式;(2)如果M为x轴正半轴上一点,N为y轴负半轴上一点,以点A,B,N,M为顶点的四边形是平行四边形,求直线MN的函数解析式.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于O,折叠梯形ABCD,使点B与点D重合,EF为折痕,交BD于H,且DF⊥BC,DF交AC于G,下列结论:①△BFD为等腰直角三角形;②DE平分∠ADB;③EF∥AC;④S梯形ABCD=12AC•BD;⑤AD+CF=DF.其中正确的结论是()如图,在反比例函数y=2x(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是DC中点,过点E作DC的垂线交CB的延长线于G,交AB于F,点H在线段GE上,且满足CH=AD,GH=GA.若∠HCG=40°,则∠HCE=.如图,已知平面直角坐标系中,菱形ABCD的顶点分别在x轴、y轴上,其中C,D两点的坐标分别为(4,0),(0,-3).两动点P、Q分别从A、C同时出发,点P以每秒1个单位的速度沿线段AB向终点B运动,点Q以每秒2个单位的速度沿折线CDA向终点A运动,设运动时间为x秒.(1)求菱形ABCD的高h和面积s的值;(2)当Q在CD边上运动,x为何值时直线PQ将菱形ABCD的面积分成1:2两部分;(3)设四边形APCQ的面积为y,求y关于x的函数关系式(要写出x的取值范围);在P、Q运动的整个过程中是否存在y的最大值?若存在,求出这个最大值,并指出此时P、Q的位置;若不存在,请说明理由.如图,在直角坐标系xOy中,Rt△OAB和Rt△OCD的直角顶点A,C始终在x轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变化时,Rt△OAB的面积恒为12.试解决下列问题:(1)填空:点D坐标为.(2)设点B横坐标为t,请把BD长表示成关于t的函数关系式,并化简;(3)等式BO=BD能否成立?为什么?(4)设CM与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状,并证明你的结论.如图,在矩形纸片ABCD中,AB=8,AD=4,把矩形沿直线AC折叠,点B落在E处,连接DE,其中AE交DC于P.有下面四种说法:①AP=5;②△APC是等边三角形;③△APD≌△CPE;④四边形ACED为等腰梯形,且它的面积为25.6.其中正确的有()个.如图所示,在直角梯形ABCD中,若∠A=90°,AD=CD=6,将一等腰直角三角板的一个锐角的顶点与点C重合,将此三角板绕着点C旋转时,三角板的两边分别交AD边于Q,交直线AB于P,若PQ=5,则AP的长为3或4.如图1,正方形ABCD和正方形QMNP,M是正方形ABCD的对称中心,边MN与边AB交于F,边AD与边QM交于E.(1)在图1中求证AE+AF=2AM(2)如图2,若将原题中的“正方形”改为“菱形”,且∠QMN=∠CBA=60°其他条件不变,则在图2中线段AE,AF与MA的关系为AE+AF=AM,(3)在(2)的条件下,若菱形MNPQ在绕着点M运动的过程中,点E,F分别在边AD,AB所在直线上时,已知菱形ABCD的边长为4,AE=1求△AFM的面积在Rt△ABC中,∠BAC=90°,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC的面积等于四边形AFBD的面积;③BE+DC=DE;④BE2+DC2=DE2;⑤∠ADC=22.5°,其中正确的是()如图,矩形ABCD的边AB在x轴正半轴上且A(1,0),B(4,0),C(4,2),反比例函数xky在第一象限内的图象恰好过点C.(1)求反比例函数的解析式;(2)将矩形ABCD分别沿直线CD、BC翻折,得到矩形EFCD、矩形GHBC、线段EF、GH分别交函数xky图象于K、J两点.①求直线KJ的解析式;②若点N是x轴上一动点,直接写出当|NK-NJ|值最大时N点坐标;(3)点M在x轴上,在坐标平面内是否存在点P,使得以A、M、C、P为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.存在.如图所示,AC为菱形的边时,存在点P1(4+13,2),P2(4-13,2),P3(4,-2),AC为对角线时,存在点P4(116,2).如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值.
本文标题:人教版八年级数学下册难题
链接地址:https://www.777doc.com/doc-2727172 .html