您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数的图像与性质专题练习
二次函数的图像与性质专题练习1.(2011•河池)如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1,x的取值范围是_________.2.(2011•扬州)如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为_________.3.(2011•黑龙江)抛物线y=﹣(x+1)2﹣1的顶点坐标为_________.4.(2011•淮安)抛物线y=x2﹣2x+3的顶点坐标是_________.5.(2010•扬州)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为_________.6.(2009•西宁)二次函数y=﹣x2+x﹣的图象的顶点坐标为_________.7.(2008•大庆)抛物线y=﹣3x2+1的顶点坐标是_________.8.(2012•牡丹江)若抛物线y=ax2+bx+c经过点(﹣1,10),则a﹣b+c=_________.9.(2012•大庆)已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1_________y2.(用>、<、=填空).10.(2008•白银)抛物线y=x2+x﹣4与y轴的交点坐标为_________.11.(2007•黄石)二次函数y=a(x﹣1)2+bx+c(a≠0)的图象经过原点的条件是_________.12.(2007•黑龙江)抛物线y=x2+bx+3经过点(3,0),则b的值为_________.13.(2006•攀枝花)已知抛物线y=ax2+bx+c经过点(1,3)与(﹣1,5),则a+c的值是_________.14.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=_________.15.抛物线y=x2+8x﹣4与直线x=4的交点坐标是_________.16.(2012•深圳)二次函数y=x2﹣2x+6的最小值是_________.17.(2011•泉州)已知函数y=﹣3(x﹣2)2+4,当x=_________时,函数取得最大值为_________.18.(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=_________.19.(2008•黄石)若实数a,b满足a+b2=1,则2a2+7b2的最小值是_________.20.二次函数y=ax2﹣4x﹣13a有最小值﹣17,则a=_________.21.(2011•济宁)将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=_________.22.(2000•河南)用配方法将二次函数y=4x2﹣24x+26写y=a(x﹣h)2+k的形式是_________.23.y=﹣配方成y=a(x﹣h)2+k的形式是_________.24.(2012•上海)将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是_________.25.(2011•昭通)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣2x+3,则b的值为_________.26.(2011•雅安)将二次函数y=(x﹣2)2+3的图象向右平移2个单位,再向下平移2个单位,所得二次函数的解析式为_________.27.(2012•宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为_________.28.(2011•德阳)在平面直角坐标系中,函数y=﹣3x2的图象不动,将x轴、y轴分别向下、向右平移2个单位,那么在新坐标系下抛物线的顶点坐标是_________.29.(2010•黑河)抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_________.30.(2010•金华)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_________.31.(2007•天水)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,它的顶点的横坐标为﹣1,由图象可知关于x的方程ax2+bx+c=0的两根为x1=1,x2=_________.32.(2006•兰州)开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),则m=_________.33.(2005•温州)若二次函数y=x2﹣4x+c的图象与x轴没有交点,其中c为整数,则c=_________.(只要求写出一个).34.(2006•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣3﹣2﹣101…y…﹣60466…容易看出,(﹣2,0)是它与x轴的一个交点,则它与x轴的另一个交点的坐标为_________.35.(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是_________(把正确的序号都填上).36.(2012•天水)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①b>0;②c<0;③|a+c|<|b|;④4a+2b+c>0.其中正确的结论有_________(填写序号).37.(2010•玉溪)如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a﹣b<0;④b2+8a>4ac中正确的是(填写序号)_________.38.(2012•枣庄)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是_________.39.(2010•日照)如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是_________.40.已知一次函数y1=kx+m和二次函数y2=ax2+bx+c的图象如图所示,它们的两个交点的横坐标是1和4,那么能够使得y1<y2的自变量x的取值范围是_________.二.解答题(共4小题)1.(2012•佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.2.(2012•绥化)如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.3.(2012•徐州)二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象.4.(2011•佛山)如图,已知二次函数y=ax2+bx+c的图象经过A(﹣1,﹣1)、B(0,2)、C(1,3);(1)求二次函数的解析式;(2)画出二次函数的图象.二次函数的图像与性质专题练习参考答案与试题解析一.填空题(共30小题)1.(2011•河池)如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1,x的取值范围是﹣2<x<1.考点:二次函数的图象;一次函数的图象.353143分析:关键是从图象上找出两函数图象交点坐标,再根据两函数图象的上下位置关系,判断y2>y1时,x的取值范围.解答:解:从图象上看出,两个交点坐标分别为(﹣2,0),(1,3),∴当有y2>y1时,有﹣2<x<1,故答案为:﹣2<x<1.点评:此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.2.(2011•扬州)如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3.考点:二次函数的图象;反比例函数的图象;反比例函数图象上点的坐标特征.353143专题:探究型.分析:先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x的方程ax2+bx=﹣=0的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.解答:解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.点评:本题考查的是二次函数的图象与反比例函数图象的交点问题,能把方程的解化为两函数图象的交点问题是解答此题的关键.3.(2011•黑龙江)抛物线y=﹣(x+1)2﹣1的顶点坐标为(﹣1,﹣1).考点:二次函数的性质.353143分析:根据二次函数顶点形式,直接可以得出二次函数的顶点坐标.解答:解:∵抛物线y=﹣(x+1)2﹣1,∴抛物线y=﹣(x+1)2﹣1的顶点坐标为:(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识.4.(2011•淮安)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.353143分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.5.(2010•扬州)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.考点:二次函数的性质.353143分析:已知抛物线的对称轴,利用对称轴公式可求b的值.解答:解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.点评:主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.6.(2009•西宁)二次函数y=﹣x2+x﹣的图象的顶点坐标为(1,﹣2).考点:二次函数的性质.353143分析:已知二次函数的一般式,直接利用顶点公式求顶点坐标.解答:解:根据顶点坐标公式,x==1,y==﹣2,即顶点坐标为(1,﹣2).故答案为:(1,﹣2).点评:主要考查了求抛物线顶点坐标的方法.7.(2008•大庆)抛物线y=﹣3x2+1的顶点坐标是(0,1).考点:二次函数的性质.353143分析:利用顶点坐标公式(﹣,),直接求解.解答:解:∵x=﹣=﹣=0,y===1,∴顶点坐标是(0,1).点评:熟练运用顶点公式求抛物线的顶点坐标.8.(2012•牡丹江)若抛物线y=ax2+bx+c经过点(﹣1,10),则a﹣b+c=10.考点:二次函数图象上点的坐标特征.353143专题:计算题.分析:由于函数图象上的点符合函数解析式,将该点坐标代入解析式即可.解答:解:将(﹣1,10)代入y=ax2+bx+c得,a﹣b+c=10.故答案为10.点评:本题考查了二次函数图象上点的坐标特征,知道函数图象上的点符合函数解析式是解题的关键.9.(2012•大庆)已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1>y2.(用>、<、=填空).考点:二次函数图象上点的坐标特征.353143分析:先根据已知条件求出二次函数的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.解答:解:∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大,∵点A(﹣7
本文标题:二次函数的图像与性质专题练习
链接地址:https://www.777doc.com/doc-2745854 .html