您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 中考总复习特殊三角形--知识讲解(提高)
中考总复习:特殊三角形—知识讲解(提高)【考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定.2.能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题.3.会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质;(2)两底角相等(等边对等角);(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一);(4)等边三角形的各角都相等,且都等于60°.要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半;(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方;(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;(6)直角三角形中,斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形中,SRt△ABC=ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)圆内接三角形,当一条边为直径时,该三角形是直角三角形.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.六边形ABCDEF的每个内角都为120°,且AB=1,BC=9,CD=6,DE=8.求六边形ABCDEF的周长.【思路点拨】考虑到每个内角为120°,则每个外角均为60°,可通过构造等边三角形来求边长及面积.【答案与解析】延长BC、ED交于M,DE、AF交于N,FA、CB交于P.∵∠EDC=∠DCB=120°∴∠DCM=∠CDM=60°,∴△MDC为等边三角形∠M=60°,同理△BAP,△EFN均为等边三角形.∠M=∠N=60°∴△MNP为等边三角形,MD=MC=6,PB=PA=1,NE=NF=EF,MP=6+9+1=16=MN=NP,EF=NF=NE=MN-ME=16-(6+8)=2.FA=NP-NF-PA=16-1-2=13,∴周长为1+9+6+8+2+13=39.【总结升华】考点是多边形外角和内角的关系.举一反三:【变式】把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是________.【答案】.2.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF.(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【思路点拨】菱形的定义和性质.【答案与解析】(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴≌.∴AE=AF.(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴,.∴.又∵AE=AF∴是等边三角形.【总结升华】此题涉及到三角形全等的判定与性质,等边三角形的判定与性质.举一反三:【高清课堂:等腰三角形与直角三角形例4】【变式】如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE.求证:CE=DE.【答案】延长BD到F,使DF=BC,连接EF,∵等边△ABC,∴AB=BC=AC,∠B=60.∵BF=BD+DF,BE=AB+AE,AE=BD,BC=DF,∴BF=BE,∴等边△BEF,∴EF=BE,∠F=∠B,∴△BCE≌△FDE(SAS).∴CE=DE.类型二、直角三角形3.△ABC和△ECD都是等腰直角三角形,,D为AB边上一点.求证:(1)△ACE≌△BCD;(2).【思路点拨】判定两个三角形全等时,首先要根据条件判断运用哪个判定定理.【答案与解析】(1)∵,∴,即.∵,∴△BCD≌△ACE.(2)∵,∴.∵△BCD≌△ACE,∴,∴.∴.【总结升华】该题涉及到的知识点有全等三角形的判定及勾股定理.4.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.【思路点拨】△ACD和△BCE都是等腰直角三角形,为证明全等提供了等线段的条件.【答案与解析】猜测AE=BD,AE⊥BD.理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB.∴△ACE≌△DCB(S.A.S.).∴AE=BD,∠CAE=∠CDB.∵∠AFC=∠DFH,∴∠DHF=∠ACD=90°,∴AE⊥BD.【总结升华】两条线段的关系包括数量关系和位置关系两种.举一反三:【变式】.以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积Sn=________.【答案】.类型三、综合运用5.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABPS△=12AB•PE,ACPS△=12AC•PF,ABCS△=12AB•CH.又∵ABPACPABCSSS△△△,∴12AB•PE+12AC•PF=12AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=______.点P到AB边的距离PE=________.【思路点拨】运用面积证明可使问题简便,(2)中分情况讨论是解题的关键.【答案与解析】(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABPS△=12AB•PE,ACPS△=12AC•PF,ABCS△=12AB•CH,∵ABPS△=ACPS△+ABCS△,∴12AB•PE=12AC•PF+12AB•CH,又∵AB=AC,∴PE=PF+CH;(2)∵在△ACH中,∠A=30°,∴AC=2CH.∵ABCS△=12AB•CH,AB=AC,∴12×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+PF=CH,∴PE=CH-PF=7-3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中.6.在中,AC=BC,,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作,交直线AB于点H.判断FH与FC的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【思路点拨】根据条件判断FH=FC,要证FH=FC一般就要证三角形全等.【答案与解析】(1)FH与FC的数量关系是:.延长交于点G,由题意,知∠EDF=∠ACB=90°,DE=DF.∴DG∥CB.∵点D为AC的中点,∴点G为AB的中点,且.∴DG为的中位线.∴.∵AC=BC,∴DC=DG.∴DC-DE=DG-DF.即EC=FG.∵∠EDF=90°,,∴∠1+∠CFD=90°,∠2+∠CFD=90°.∴∠1=∠2.∵与都是等腰直角三角形,∴∠DEF=∠DGA=45°.∴∠CEF=∠FGH=135°.∴△CEF≌△FGH.∴FH=FC.(2)FH与FC仍然相等.【总结升华】对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养.举一反三:【高清课堂:等腰三角形与直角三角形例7】【变式】如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=CDBC;②S⊿ABC+S⊿CDE≥S⊿ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A.1个B.2个C.3个D.4个【答案】D.MEDCBA
本文标题:中考总复习特殊三角形--知识讲解(提高)
链接地址:https://www.777doc.com/doc-2761001 .html