您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 中考数学压轴题专项练习含答案
中考数学压轴题专项练习—-函数图象中点的存在性问题1.1因动点产生的相似三角形问题例12012年苏州市中考第29题如图1,已知抛物线211(1)444byxbx(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.图1例22012年黄冈市中考模拟第25题如图1,已知抛物线的方程C1:1(2)()yxxmm(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图11.2因动点产生的等腰三角形问题例12012年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1例22012年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图11.3因动点产生的直角三角形问题例12012年广州市中考第24题如图1,抛物线233384yxx与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有....三个时,求直线l的解析式.图1例22012年杭州市中考第22题在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.中考数学压轴题专项练习—-函数图象中点的存在性问题(答案)2012年苏州市中考第29题思路点拨1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.满分解答:(1)B的坐标为(b,0),点C的坐标为(0,4b).(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC.因此PD=PE.设点P的坐标为(x,x).如图3,联结OP.所以S四边形PCOB=S△PCO+S△PBO=1152428bxbxbx=2b.解得165x.所以点P的坐标为(1616,55).图2图3(3)由2111(1)(1)()4444byxbxxxb,得A(1,0),OA=1.①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.当BAQAQAOA,即2QABAOA时,△BQA∽△QOA.所以2()14bb.解得843b.所以符合题意的点Q为(1,23).②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。因此△OCQ∽△QOA.当BAQAQAOA时,△BQA∽△QOA.此时∠OQB=90°.所以C、Q、B三点共线.因此BOQACOOA,即14bQAb.解得4QA.此时Q(1,4).图4图52012年黄冈市中考模拟第25题思路点拨1.第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BH+EH最小.2.第(4)题的解题策略是:先分两种情况画直线BF,作∠CBF=∠EBC=45°,或者作BF//EC.再用含m的式子表示点F的坐标.然后根据夹角相等,两边对应成比例列关于m的方程.满分解答(1)将M(2,2)代入1(2)()yxxmm,得124(2)mm.解得m=4.(2)当m=4时,2111(2)(4)2442yxxxx.所以C(4,0),E(0,2).所以S△BCE=1162622BCOE.(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.设对称轴与x轴的交点为P,那么HPEOCPCO.因此234HP.解得32HP.所以点H的坐标为3(1,)2.(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠BCE=∠FBC,所以当CEBCCBBF,即2BCCEBF时,△BCE∽△FBC.设点F的坐标为1(,(2)())xxxmm,由''FFEOBFCO,得1(2)()22xxmmxm.解得x=m+2.所以F′(m+2,0).由'COBFCEBF,得244mmBFm.所以2(4)4mmBFm.由2BCCEBF,得222(4)4(2)4mmmmm.整理,得0=16.此方程无解.图2图3图4②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,由于∠EBC=∠CBF,所以BEBCBCBF,即2BCBEBF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得1(2)()2xxmxm.解得x=2m.所以F′(2,0)m.所以BF′=2m+2,2(22)BFm.由2BCBEBF,得2(2)222(22)mm.解得222m.综合①、②,符合题意的m为222.2012年扬州市中考第27题思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3),代入点C(0,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BHPHBOCO,BO=CO,得PH=BH=2.所以点P的坐标为(1,2).图2(3)点M的坐标为(1,1)、(1,6)、(1,6)或(1,0).设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1,1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6m.此时点M的坐标为(1,6)或(1,6).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1,6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3图4图52012年临沂市中考第26题思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.满分解答(1)如图2,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,23OC.所以点B的坐标为(2,23).(2)因为抛物线与x轴交于O、A(4,0),设抛物线的解析式为y=ax(x-4),代入点B(2,23),232(6)a.解得36a.所以抛物线的解析式为23323(4)663yxxxx.(3)抛物线的对称轴是直线x=2,设点P的坐标为(2,y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得23y.当P在(2,23)时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以224(23)16y.解得1223yy.③当PB=PO时,PB2=PO2.所以22224(23)2yy.解得23y.综合①、②、③,点P的坐标为(2,23),如图2所示.图2图32012年广州市中考第24题思路点拨1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D有两个.2.当直线l与以AB为直径的圆相交时,符合∠AMB=90°的点M有2个;当直线l与圆相切时,符合∠AMB=90°的点M只有1个.3.灵活应用相似比解题比较简便.满分解答(1)由23333(4)(2)848yxxxx,得抛物线与x轴的交点坐标为A(-4,0)、B(2,0).对称轴是直线x=-1.(2)△ACD与△ACB有公共的底边AC,当△ACD的面积等于△ACB的面积时,点B、D到直线AC的距离相等.过点B作AC的平行线交抛物线的对称轴于点D,在AC的另一侧有对应的点D′.设抛物线的对称轴与x轴的交点为G,与AC交于点H.由BD//AC,得∠DBG=∠CAO.所以34DGCOBGAO.所以3944DGBG,点D的坐标为9(1,)4.因为AC//BD,AG=BG,所以HG=DG.而D′H=DH,所以D′G=3DG274.所以D′的坐标为27(1,)4.图2图3(3)过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点M.以AB为直径的⊙G如果与直线l相交,那么就有2个点M;如果圆与直线l相切,就只有1个点M了.联结GM,那么GM⊥l.在Rt△EGM中,GM=3,GE=5,所以EM=4.在Rt△EM1A中,AE=8,113tan4MAMEAAE,所以M1A=6.所以点M1的坐标为(-4,6),过M1、E的直线l为334yx.根据对称性,直线l还可以是334yx.2012年杭州市中考第22题思路点拨1.由点A(1,k)或点B(-1,-k)的坐标可以知道,反比例函数的解析式就是kyx.题目中的k都是一致的.2.由点A(1,k)或点B(-1,-k)的坐标还可以知道,A、B关于原点O对称,以AB为直径的圆的圆心就是O.3.根据直径所对的圆周角是直角,当Q落在⊙O上是,△ABQ是以AB为直径的直角三角形.满分解答(1)因为反比例函数的图象过点A(1,k),所以反比例函数的解析式是kyx.当k=-2时,反比例函数的解析式是2yx.(2)在反比例函数kyx中,如果y随x增大而增大,那么k<0.当k<0时,抛物线的开口向下,在对称轴左侧,y随x增大而增大.抛物线y=k(x2+x+1)=215()24kxk的对称轴是直线12x.图1所以当k<0且12x时,反比例函数与二次函数都是y随x增大而增大.(3)抛物线的顶点Q的坐标是1
本文标题:中考数学压轴题专项练习含答案
链接地址:https://www.777doc.com/doc-2761343 .html