您好,欢迎访问三七文档
应用题复习初中数学应用题主要有:方程应用题,不等式应用题,一次函数应用题,二次函数应用题,统计应用题,解直角三角形应用题等。就这几年中考数学试题中的应用题来说,在各种题型中都有出现,涉及的背景问题有行程问题,增长率问题,东西部人均收入差距问题,用车费用问题,商品打折问题,广告印刷问题,拱桥、隧道设计问题,小区规划问题,储蓄问题,环境污染问题,铺地砖问题等等。1.方程应用题(1)方程应用题的解题步骤可用六个字概括,即审(审题),设(设未知数),列(列方程),解(解方程),检(检验),答。(2)考试内容多结合当前一些热点话题,如储蓄问题,人均收入问题,环保问题,商品打折问题等。例1:为了有效地控制沙尘暴等恶劣天气对人类生存环境的破坏,我国北方某地决定加快植树造林的速度,计划用两年的时间将防风林面积从现在的20,000公顷扩大到2.4万公顷。求平均每年增长的百分率。例2:某种商品因换季准备打折出售。如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少。对应练习1.(2005陕西)一件商品按成本价提高40%后的标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A、x40%80%=240B、x(1+40%)×80%=240C、240×40%×80%=xD、40%x=240×80%2.(2005宜昌)小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?3.(2004湟中)某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?4.(2005连云港)某公司2002,2004年的营业额分别为80万元、180万元,若2003,2004,2005这三年的年增长率都相同,则该公司2005年的营业额应为万元.5.(2005深圳)一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A、106元B、105元C、118元D、108元6.(2005荆州)有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了。则这次生意的盈亏情况为()A、赚6元B、不亏不赚C、亏4元D、亏24元7.(2005绵阳)我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米.8.(2004潍坊)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?9.某商品平均每天销售40件,每件盈利20元,若每件每降阶1元,每天可多销售10件。(1)若每件降价x元,可获的总利润为y元,写出x与y之间的关系式。(2)每件降价多少元时,每天利润最大?最大利润为多少?10(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元,每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?不等式应用题(1)不等式应用题是近年来中考命题的热点。这个问题中通常带有“不少于”,“不多于”,“不超过”,“最多”,“至少”等关键词,还常常用到求不等式整数解问题。例3:某城市平均每天产生垃圾700吨,由甲乙两个垃圾加工厂处理,已知甲厂每小时可处理垃圾55吨,需费用550元,乙厂每小时可处理垃圾45吨,需费用495元。1、甲乙两厂同时处理该城市的垃圾,每天需几小时完成。2、如果规定该城市每天用于处理垃圾的费用不得超过7,370元,甲厂每天处理垃圾至少需要多少小时?例4:2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?比赛项目票价(元/场)男篮1000足球800乒乓球500例5:若干个小朋友,若每人分3件,则剩余4件;若每人分4件,则最后一人得到的玩具不足3件,求小朋友的人数和玩具数。对应练习1:某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.2(2009天水)为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量及年消耗费用如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200年消耗费用(万元/台)11经预算,该企业购买设备的资金不高于105万元.(1)该企业有哪几种购买方案?(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?3.(2011湖北随州)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?4、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用(2)中所求得的最大利润再次进货,请直接写出获得最大利润的进货方案.函数应用题例6:某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)求y与x之间的函数关系式;(2)设公司获得的总利润(总利润总销售额总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?4003006070Oy(件)x(元)对应练习1.2010深圳(本题8分)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x元之间的函数关系为y=20+4x(x>0)(1)求M型服装的进价;(3分)(2)求促销期间每天销售M型服装所获得的利润W的最大值.(5分)销售,已知每天销售数量与降价2.(2011深圳中考)(本题9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总费用y(元)与x(台)的函数关系式;(2)要使总费用不高于20200元,请你帮忙该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?3.(2008深圳中考)“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部..运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?甲地乙地A馆800元∕台700元∕台B馆500元∕台600元∕台出发地目的地表1出发地目的地甲地乙地A馆x(台)_______(台)B馆_______(台)_______(台)表2课后作业1:某鱼塘放养鱼苗100,000条,根据这几年的经验知道鱼苗成活率为95%,一段时间后,准备打捞,第一次从中网出40条,称得平均每条重2.5千克,第二次网出25条,称得平均每条重2.2千克,第三次网出35条,称得平均每条重2.8千克,请估计鱼塘中鱼总重量约为多少万千克?2.(2004湟中)一商店把某种品牌的羊毛衫按标价的八折出售,仍可获利20%,若该品牌的羊毛衫的进价每价是100元,则标价是每件_____元.3.(2004海口)今年我省荔枝又喜获丰收.目前市场价格稳定,荔枝种植户普遍获利.据估计,今年全省荔枝总产量为50000吨,销售收入为61000万元.已知“妃子笑”品种售价为1.5万元/吨,其他品种平均售价为0.8万元/吨,求“妃子笑”和其他品种的荔枝产量各多少吨.如果设“妃子笑”荔枝产量为x吨,其他品种荔枝产量为y吨,那么可列出方程组为.4.(2005大连)某企业年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率。5.(10分)为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量及年消耗费用如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200年消耗费用(万元/台)11经预算,该企业购买设备的资金不高于105万元.(1)该企业有哪几种购买方案?(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与排到污水厂处理相比较,10年共节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)6.(8分)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
本文标题:中考数学应用题复习
链接地址:https://www.777doc.com/doc-2761578 .html