您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 中考第一轮平面直角坐标系变量与函数复习教案
课题--中考第一轮复习《平面直角坐标系、变量与函数》一、【教学目标】(一)知识与技能1.会画平面直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标.2.掌握坐标平面内点的坐标特征.3.了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.4.能确定函数自变量的取值范围,并会求函数值.(二)过程与方法通过复习进一步发展学生的数形结合意识、形象思维能力和数学应用能力.(三)情感态度价值观通过复习使学生感受数学知识在生活中的应用,激发学习数学的兴趣。二、【教学重难点】1、教学重点:(1)掌握点与坐标的一一对应关系,能在坐标系中根据坐标找到点,由点得坐标,掌握各象限的和坐标上的点的坐标符号规律。(2)建立适当的坐标系,描述物体的位置,在同一平面直角坐标系中,能用坐标表示平移变换。(3)函数的基本概念、函数自变量的取值范围、函数之间的变化规律及其图象的应用2、教学难点:应用数学知识解决实际问题三、教学过程:(一)考点知识精讲考点一、平面直角坐标系1.平面直角坐标系:(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.这个平面叫做坐标平面.(2)两条坐标轴把平面分成四个部分:右上部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限(如图1-5-1所示).2.点的坐标:(1)对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴y轴上对应的数a、b分别叫做点P的横坐标、纵坐标.有序数对(a、b)叫做点P的坐标.(2)坐标平面内的点可以用有序实数对来表示反过来每一个有序实数对都能用坐标平面内的点来表示;即坐标平面内的点和有序实数对是一一对应关系.(3)设P(a、b),若a=0,则P在y轴上;若b=0,则P在x轴上;若a+b=0,则P点在二、四象限两坐标轴夹角平分线上;若a=b,则P点在一、三象限两坐标轴夹角的平分线上.(4)设P1(a,b)、P2(c,d),若a=c,则P;P2∥y轴;若b=d,则P;P2∥x轴.考点二:对称点的坐标点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b),关于原点对称的点的坐标为(-a,-b),反过来,P点坐标为P1(a1,b1),P1(a2,b2),若a1=a2,b1+b2=0,则P1、P2关于x轴对称;若a1+a2=0,b1=b2,则P1、P2关于y轴对称;若a1+a2=0,b1+b2=0,则P1、P2关于原点轴对称.考点三:确定位置确定位置的方法主要有两种:(1)由距离和方位角确定(2)建立平面直角坐标系由一对有序实数对确定.考点四、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定....的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。【教师活动】:以提问的形式帮助学生梳理平面直角坐标系、变量与函数有关知识点,并用多媒体课件展示复习内容【学生活动】:独立思考问题,个别学生回答问题(二)、【中考典型精析】例1.(2013•曲靖)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.解答:解:∵点P(﹣2,0)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.例2.(2013•荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)考点:坐标与图形变化-旋转.3718684专题:数形结合.分析:如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.解答:解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.点评:本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.例3.(2013•泸州)函数自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,x﹣1≥0且x﹣3≠0,解得x≥1且x≠3.故选A.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.例4.(2013重庆市(A),11,4分)万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回到万州,若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米).则下列各图中,能够反映y与x之间的函数关系的大致图象是()【答案】C.【解析】由题意,知轮船经历了从万州出发,到停留一段时间,再返回到万州三个阶段,而y表示轮船距万州的距离,所以当时间x=0时,y=0,当时间x达到最大时,y=0,由此排除B,D两选项.另外,由于轮船从万州出发,是逆水航行,那么返回时就是顺水航行,从而可知出发时的速度小于返回时的速度,这反映在图象上就表现为第三段要比第一段陡,故可排除A.只有C符合要求.【方法指导】本题考查函数图象的识别.解题关键是能够将实际问题情境与函数图象相互转换,能够从图象的横、纵两个方向分别获取信息,判断相应的实际意义.例5.(2013湖北省咸宁市)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是①③④.(把你认为正确说法的序号都填上)考点:函数的图象.分析:结合函数图象及选项说法进行判断即可.解答:解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.点评:本题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,有一定难度.【教师活动】:出示问题,并分析问题,指导学生完成例题【学生活动】:分组讨论并交流问题,个别学生回答问题(三)【课堂练习】1、(2013年广东湛江)在平面直角坐标系中,点A2,3在第()象限..A一.B二.C三.D四2、(2013年深圳市)在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则ba的值为()A.33B.-33C.-7D.73、(2013•遂宁)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)4、(2013安顺)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5、(2013台湾)坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)6、(2013•郴州)函数y=中自变量x的取值范围是()A.x>3B.x<3C.x≠3D.x≠﹣37、(2013•资阳)在函数y=中,自变量x的取值范围是()A.x≤1B.x≥1C.x<1D.x>18、(2013•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.第10题图9、(2008年福州质检)如图,机器猫从扇形的圆心O出发,一段时间内沿O→A→B→O的路线匀速运动一周,能近似刻画机器猫到出发点O的距离y与时间x之间关系的函数图象是10、(2010年福州质检)如图,在平面直角坐标系中,△PQR可以看作是△ABC经过下列变换得到:①以点A为中心,逆时针方向旋转90;②向右平移2个单位;③向上平移4个单位.下列选项中,图形正确的是().11、(2013福州质检)已知一个函数中,两个变量x与y的部分对应值如下表:x…-2-3…-2+3…2-1…2+1…y…-2+3…-2-3…2+1…2-1…如果这个函数图象是轴对称图形,那么对称轴可能是A.x轴B.y轴C.直线x=1D.直线y=x12、(2013•淮安)点A(﹣3,0)关于y轴的对称点的坐标是(3,0).13、(2011年福州质检)函数12yx自变量x的取值范围是________________________.14、(2013•湘西州)函数y=的自变量x的取值范围是.15、(2013•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).16、(2013•宁夏)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3.17、(2013湖北黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.第9题图第18题图18、(2010年福州质检)如图,已知1A(1,0),2A(1,-1),3A(-1,
本文标题:中考第一轮平面直角坐标系变量与函数复习教案
链接地址:https://www.777doc.com/doc-2762766 .html