您好,欢迎访问三七文档
中国风能评估赵飞热动二班120280223内容摘要:风能种清洁的、可再生的、储量很大的能源,风力发电是具有大规模发展潜力的成熟的可再生能源技术。风力发电的前提是进行风资源最优场址的选择,其关键是要摸清风能资源状况及其分布和变化。客观、准确的风能资源评价是促进风力发电规模化发展的重要保障。关键词风能资源风能发电可再生潜力巨大准确评估技术支持一我国风力资源潜力与分布:据国家气象局估算,全国风能密度为100W/m2,风能资源总储量约1.6X105MW,特别是东南沿海及附近岛屿、内蒙古和甘肃走廊、东北、西北、华北和青藏高原等部分地区,每年风速在3m/s以上的时间近4000h左右,一些地区年平均风速可达6~7m/s以上,具有很大的开发利用价值。有关专家根据全国有效风能密度、有效风力出现时间百分率,以及大于等于3m/s和6m/s风速的全年累积小时数,将我国风能资源划分为如下几个区域。第一东南沿海及其岛屿,为我国最大风能资源区。第二内蒙古和甘肃北部,为我国次大风能资源区。第三黑龙江和吉林东部以及辽东半岛沿海,风能也较大。第四青藏高原、三北地区的北部和沿海,为风能较大区。第五云贵川,甘肃、陕西南部,河南、湖南西部,福建、广东、广西的山区,以及塔里木盆地,为我国最小风能区。第六在4和5地区以外的广大地区,为风能季节利用区。有的在冬、春季可以利用,有的在夏、秋季可以利用。二中国风力发电发展规划设想:从1986年建立第一个风电场起到1994年电力部出台风电并网和还本付息电价的规定,风电场是利用本国政府拨款或外国政府赠款建设的,主要对风电并网技术的可行性进行示范。在1995年由电力部主办的北京国际风能会议上,正式提出2000年底我国风电装机规模为1000MW的目标。目前各省电力公司已经成为投资风电项目、成立风电公司的主体。融资方式有来自国家经贸委“双加工程”的贴息贷款,有来自许多国家的优惠软贷款以及一些商业银行贷款。全国风电装机容量从1994年的29W增加到2000年底的344MW。与1995年电力部提出的目标相比,少了许多。从许多有关的省电力公司那里得知,到2000年底可以获得资金的项目达到960MW,说明资金短缺不是中国风电发展的障碍。只有对环境保护更加重视,制定更多激励政策,我国风电才能在ZI世纪大规模发展。目前,风电上网电价高于煤电部分只在省级范围内分担,风电应该在那些风能资源丰富、火电厂温室气体排放多、经济发展快,电价承受能力强的地区优先发展,比如广东、福建和浙江省。但是目前这些地方市场经济比较发展,电价高的风电得不到应有的重视,而电网平均电价很低的新疆和内蒙自治区风电却发展快。由于当地电网容量和负荷小、电价承受能力差,再扩大风电规模从总体上看对当地经济发展不利,这种状况应当改变。在2001年到2005年期间,应加强东北三省、内蒙东部、河北北部及整个沿海陆地岛屿的风能资源详查,找出能够建设4000MW风电场的场址,并开始对岸外海上风能资源进行普查,找到几个可以建设示范海上风电场的场址。政府将鼓励采用国产机组建设风电场的业主,以贴息的方式补偿国产机组示范风电场的风险,开拓市场拉动国内总装和零部件制造业,提供批量生产和改进产品的机会,降低机组成本。在现行政策条件下,到2005年底全国装机预计达到1500MW。在2006年到2010期间,国内制造的整机和零部件成本较低,在新增容量中将占70%,如果减排温室气体的环境保护压力加大,国家出台全社会分摊风电价差的政策,全国风电装机规模也许能达到3000MW~5000MW,并建造一座海上示范风电场。风电以其良好的环境效益,逐步降低的发电成本,必将成为21世纪中国重要的电能来源。三我国风能技术发展发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。1、风力发电机组机型及容量的发展现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即达到2MW。进入21世纪,兆瓦级风力机逐渐成为国际风电市场上的主流产品。2004年德国Repower即研制出第一台5MW风电机,Enercon开发出第二代直驱式6WM风电机,预计2013年单机容量将突破15MW。从世界范围来看,1.5MW-2MW的机型占世界机组容量的比例,已从2007年的63.7%飞速上升到80.4%;而在我国利用风力发电始自20世纪70年代,发展微小型风力发电机为内蒙古、青海的牧民提水饮用及发电照明,容量在50-500W不等,制造技术成熟。但是大、中型风力发电机发展起步较晚,发展速度较快,并且装机容量逐年增加迅速。2005年风电场新安装的兆瓦级风电机组占当年新装机容量的21.5%,而2009年比例已经上升到86.86%。这表明容量风电机组已经成为我国风电市场上的主流产品。2、风力发电机组控制技术的发展控制技术是风力发电机组安全高效运行的关键技术,这是因为:1)自然风速的大小和方向随着大气的气压、气温和湿度等的活动和风电场地形地貌等因素的随机性和不可控性,这样风力机所获得的风能也是随机和不可控的。2)为使风能利用率更高,大型风力发电机组的叶片直径大约在60m~100m之间,因此风轮具有较大的转动惯量。3)自动控制在风力发电机组的并网和脱网、输入功率的优化和限制、风轮的主动对风以及运行过程中故障的检测和保护中都应得到很好的利用。4)风力资源丰富的地区通常环境较为恶劣,在海岛和边远的地区甚至海上,人们希望分散不均的风力发电机组能够无人值班运行和远程监控。这就对风力发电机组的控制系统可靠性提出了很高的要求。因此,众多学者都致力于深入研究风力发电的控制技术和控制系统,这些研究工作对于风力发电机组优化运行有极其重要的意义。计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。定桨距型风力机指桨叶与轮毂的连接是固定的,即桨距角固定不变,当风速变化时,桨叶的迎风角度固定不变。失速型是当风速高于额定风速,利用桨叶翼型本身所具有的失速特性,即气流的攻角增大到失速条件,使桨叶的表面产生涡流,将发电机的功率输出限制在一定范围内。失速调节型的优点是简单可靠,当风速变化引起输出功率变化时,只通过桨叶的被动失速调节而控制系统不做任何控制,使控制系统大为简化。其缺点是叶片重量大,桨叶、轮毂、塔架等部件受力较大,机组的整体效率较低,也使得这些关键部件更容易疲劳磨损。变速恒频风力发电机组是近年来发展起来的一种新型风力发电系统,其转速不受发电机输出功率的限制,而其输出电压的频率、幅值和相位也不受转子转速的影响。与恒速风电机组相比,它的优越性在于:低风速时能够跟踪风速变化,在运行中保持最佳叶尖速比以获得最大风能;高风速时利用风轮转速的变化调节风力机桨距角,在保证风电机组安全稳定运行的同时,使输出功率更加平稳。变速恒频风力发电机组通过励磁控制和变桨距调节来实现最佳运行状态。变桨距是根据风速和发电机转速来调整叶片桨距角,从而控制发电机输出功率,由传动齿轮箱、伺服电机和驱动控制单元组成。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,以得到理想的输出功率。变桨距风力发电机组的优点是:输出功率平稳,在额定点具有较高的风能利用系数,具有更好的起动性能与制动性能,能够确保高风速段的额定功率。3、风力发电机组直驱式、全功率变流技术的发展无齿轮箱的直驱方式能有效地减少由于齿轮箱问题而造成的机组故障,可有效提高系统的运行可靠性和寿命,减少维护成本,因而得到了市场的青睐。采用无齿轮箱系统的德国Enercon公司在2009年仍然是德国、葡萄牙风电产业的第一大供应商和印度风电产业的第二大供应商,在新增风电装机容量中,Enercon公司已占本国市场份额的55%以上。西门子公司已经在丹麦的西部安装了两台3.GMW的直驱式风电机组,这两台风力机正处于试运行阶段。其他主要制造企业也在积极开发研制直驱风电机组。我国新疆金风科技有限公司与德国Vensys公司合作研制的1.5MW直驱式风电机组,已有上千台安装在风电场。金风科技在2009年是我国风电市场的第二大供应商。同时,我国湘电公司的2MW直驱风电机组也已批量进入市场。其他如:广西银河艾迈迪、航天万源、潍坊瑞其能、包头汇全稀土、江西麦德公司、山东鲁能等制造企业也开发研制了直驱风电机组。2009年新增大型风电机组中,直驱式风电机组已超过17%。伴随着直驱式风电系统的出现,全功率变流技术得到了发展和应用。应用全功率变流的并网技术,使风轮和发电机的调速范围扩展到。至150%的额定转速,提高了风能的利用范围。由于全功率变流技术对低电压穿越技术有很好且简单的解决方案,对下一步发展占据了优势。与此同时,半直驱式风电机组也开始出现在世界风电市场上。在轴承支撑方式上,单个迥转支承轴承代替主轴和两轴承成为某些2兆瓦以上机组的选择,如:富兰德的2.5兆瓦风机,这说明无主轴系统正在成为欧洲风电机组发展的一个新动向。4、智能化控制技术的应用加速提高了风电机组的可靠性和寿命鉴于风电机组的极限载荷和疲劳载荷是影响风电机组及部件可靠性和寿命的主要因素之一,近年来,风电机组制造厂家与有关研究部门积极研究风电机组的最优运行和控制规律,通过采用智能化控制技术,与整机设计技术结合,努力减少和避免风电机组运行在极限载荷和疲劳载荷,并逐步成为风电控制技术的主要发展方向。5、叶片技术发展趋势随着风电机组尺寸的增大,叶片的长度也变得更长,为了使叶片的尖部不与塔架相碰,设计的主要思路是增加叶片的刚度。为了减少重力和保持频率,则需要降低叶片的重量。好的疲劳特性和好的减振结构有助于保证叶片长期的工作寿命。额外的叶片状况检测设备将被开发出来并安装在风电机组上,以便在叶片结构中的裂纹发展成致命损坏之前或风电机组整机损坏之前警示操作者。对于陆上风电机组来说,不久这种检测设备就会成为必备品。为了增加叶片的个刚度并防止它由于弯曲而碰到塔架,在长度大于50米的叶片上将广泛使用强化碳纤维材料。为了减少叶片和整机上的疲劳负荷,可控制的尾缘小叶可能被逐步引入叶片市场。6、低电压穿越技术得到应用随着风电机组单机容量的不断增大和风电场规模的不断扩大,风电机组与电网间的相互影响已日趋严重。一旦电网发生故障迫使大面积风电机组因自身保护而脱网的话,将严重影响电力系统的运行稳定性。因此,随着接入电网的风力发电机容量的不断增加,电网对其要求越来越高,通常情况下要求发电机组在电网故障出现电压跌落的情况下不脱网运行,并在故障切除后能尽快帮助电力系统恢复稳定运行,也就是说,要求风电机组具有一定低电压穿越能力。随着风力发电装机容量的不断增大,很多国家的电力系统运行导则对风电机组的低电压穿越能力做出了规定。我国的风电机组在电网电压跌落情况下,也必须采取相应的应对措施,确保风电系统的安全运行并实现LVRT功能。目前,我国已有多家企业的风电机组产品通过了低电压穿越性能试验。四我国风电产业发展存在的问题尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。其次,我国风电发展规划与电网规划不相协
本文标题:中国风能评估
链接地址:https://www.777doc.com/doc-2772509 .html