您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 两种特殊电场的场强的分布规律
-1-两种特殊电场的场强的分布规律高中物理所涉及的电场主要是匀强电场,但近还必须知道两种特殊的非匀强电场:即等量同种电荷和等量异种电荷形成的电场,电场线分布如图1所示,对于这两种特殊的电场主要考查中垂线和两点电荷连线上场强和电势的分布情况。下面笔者对这两种电场的电场强度变化规律做如下的总结和证明。一、等量异种电荷的电场强度分布情况:(1)在两点电荷连线上场强先减小后增大,关于中点呈对称分布;中点的场强为最小但不为零。证明:如图2所示,设P是AB连线上的任意一点,AB=l,AP=a,BP=b,则P点的场强可表示为22222)()(abbakQbkQakQEp,由不等式abba222得:当a=b=2l时,场强EP的值最小,22min82lkQakQE,即在两点电荷连线的中点场强最小,是不为零的数值。(2)在中垂线上场强的方向垂直于中垂线,场强大小关于连线呈对称分布,向两边逐渐的减小。证明:在中垂线上如图3所示,EA、EB分别表示AB两点电荷在M处产生的场强,由于EA=EB,根据平行四边形定则可知场强E的方向垂直于中垂线。设A、B两点到M点的距离为r,由点电荷场强公式得:EA=EB=22cosrkQ,E=2EAcosθ=23cos2rkQ,(把R改成L)θ的取值0≤θ<90°随θ角的增大E在逐渐的减小,但方向不变。【例1】:(09上海,3)两带电量分别为q和-q的点电荷放在x轴上,相距为L,图4中能正确反映两电荷连线上场强大小E与x关系的是()【答案】A【解析】:由于等量异种点电荷连线上的场强先减小后增大,呈对称性分布,且中点的场强为最小但不为零,因此A正确。【例2】:(09海南,10)如图5所示,两等量异号的点电荷相距为2a。M与两点电荷共线,N位于两点电荷连线的中垂线上,两点电荷连线中点到M和N的距离都为L,且L>>a。略去/2naLn项的贡献,则两点电荷的合电场在M和N点的强度()A.大小之比为2,方向相反B.大小之比为1,方向相反C.大小均与a成正比,方向相反D.大小均与L的平方成反比,方向相互垂直-2-【答案】:AC【解析】:此题为电偶极子的模型。如右下图所示,合电场在M和N点的强度分别为EM=2()KqLa-2()KqLa=34KqaL,EN=222KqLa×22aLa=32KqaL,EM∶EN=2;答案A正确。场强方向如图所示,N点处强场方向由+q指向-q,M点的靠近正点电荷,所以M点场强方向由-q指向+q。答案C正确。二、等量同种电荷的电场强度分布情况:1.等量同种电荷形成电场的场强分布特点:(1)等量同种电荷的场强是先减小后增大,连线中点的场强最小且为零,呈对称性分布。(2)两点电荷连线的中垂线上,场强关于中点对称,方向沿中垂线方向;大小是先变大后变小。下面以等量正点电荷的电场为例证明结论(2)和在何处场强是最大。如图6所示,A、B为两个正点电荷,P为中垂线上的任一点,设AB两点电荷的距离为l,AP的距离为r,AP与AB所成夹角为θ,则有cos2lr,EA和EB分别为两点电荷在P点的场强,则有2rKQEEBA,在P点的合场强为E=2EAsinθ,化简:232222)sin(sin8sin)sin1(8sincos8lKQlKQlKQE,从上式可知E的变化情况与(sinθ-sin3θ)成正比,利用数学知识设函数:y=sinθ-sin3θ来求最值。令t=sinθ,则y=-t3+t,此函数有最大值,利用导数求其最大值,对y求导有:132ty,方程0132t,解得:,33t则当33sin,33即t时,函数y有最大值,计算可得θ=35.26°,此处的场强最大,最大值29316lkQEm。为此连线的中垂线上场强的变化情况是:从O点逐渐增大到最大,到无穷远处又逐渐减少为零。所以整个过程是先增大后减小。【例3】:如图所示,M、N为两等量的同种电荷,在其连线的中垂线上的P点放置一个静止的负点电荷,不计重力,下列说法正确的是()A.点电荷在从P点到O点的过程中,加速度越来越大,速度也越来越大。B.点电荷在从P点到O点的过程中,加速度越来越小,速度也越来越大。C.点电荷运动到O点时加速度为零,速度达到最大值。D.点电荷在过O点后,速度也越来越小,加速度越来越大,直到粒子速度为零。【解析】:根据等量同种电荷连线的中垂线上场强的分布规律:从O点经P点到无穷远处,场强的大小是先增大后减小,其间有一个最大点P′,但负点电荷的初始位置P不知在P′的上方还是下方,故从P点到O点加速度的变化有两种可能,排除答案AB。但无论是哪种情况到O点时速度为最大。过O点后根据对称性加速度应先增大后减小,排除D答案。故C答案正确。(本文已发表于《物理教师》2010年第十二期)
本文标题:两种特殊电场的场强的分布规律
链接地址:https://www.777doc.com/doc-2782638 .html