您好,欢迎访问三七文档
1流体力学绪论第一章流体的基本概念第二章流体静力学第三章流体动力学第四章粘性流体运动及其阻力计算第五章有压管路的水力计算第六章明渠定常均匀流第九章泵与风机绪论一、流体力学概念流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。研究内容:研究得最多的流体是水和空气。1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系;2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。二、流体力学的发展历史2流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯3(英)又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证的令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。普朗克学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克(德)又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基(俄)、恰普雷金(俄)、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。近年来又开始了用有限元方法研究高速流的问题,也出4现了有限元方法和差分方法的互相渗透和融合。从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究。在我国,水利事业的历史十分悠久:4000多年前的“大禹治水”的故事——顺水之性,治水须引导和疏通。秦朝在公元前256—公元前210年修建了我国历史上的三大水利工程都江堰(平面图、视频)、郑国渠、灵渠——明渠水流、堰流。古代的计时工具“铜壶滴漏”——孔口出流。清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。隋朝(公元587—610年)完成的南北大运河。隋朝工匠李春在冀中洨河修建(公元605—617年)的赵州石拱桥——拱背的4个小拱,既减压主拱的负载,又可宣泄洪水。三、流体力学的应用1、课程的性质与目的性质:流体力学是研究流体机械运动规律及其应用的学科,是一门必修的专业基础课程。研究对象以水为主体,旁及气体与可压缩流体;研究内容:机械运动规律和工程应用。目的:通过各教学环节,使学生掌握流体运动的基本概念,基本理论,基本计算方法与实验技能,培养分析问题的能力和创新能力,为学习专业课程,并为将来从事专业技术工作打下基础。地位:为水污染控制工程、大气污染控制工程、环境工程设计等多门专业课程阐释所涉及的流体力学原理。其他:a.素质教育——“力学文化”、“水文化”。b.研究生入学考试:工程流体力学(水力学)往往成为研究生入学考试中的专业基础课之一。2、流体力学的应用流体是人类生活和生产中经常遇到的物质形式,因此许多科学技术部门都和流体力学有关。例如5水利工程、土木建筑、交通运输、机械制造、石油开采、化学工业、生物工程等都有大量的流体问题需要应用流体力学的知识来解决,事实上,目前很难找到与流体力学无关的专业和学科。(1)在流体力学已广泛用于土木工程的各个领域,如建筑工程和土建工程中的应用。如基坑排水、路基排水、地下水渗透、地基坑渗稳定处理、围堰修建、海洋平台在水中的浮性和抵抗外界扰动的稳定性等。(2)在市政工程中的应用。如桥涵孔径设计、给水排水、管网计算、泵站和水塔的设计、隧洞通风等,特别是给水排水工程中,无论取水、水处理、输配水都是在水流动过程中实现的。流体力学理论是给水排水系统设计和运行控制的理论基础。观看录像(3)城市防洪工程中的应用。如堤、坝的作用力与渗流问题、防洪闸坝的过流能力等。(4)在建筑环境与设备工程中的应用。如供热、通风与空调设计,以及设备的选用等。例1高位取水的电力大于低位取水的电力?实际发电电能相同例2在98长江特大洪水时,有人提出了一个紧急提案:调用休渔期的数百只船至长江中游,抛锚后,齐开足马力用螺旋桨推动水流加大流速,降低长江上下游的洪水位?异想天开3、本课程基本要求通过本课程学习应达到的基本要求是:(1)具有较为完整的理论基础,包括:①掌握流体力学的基本概念;②熟练掌握分析流体力学的总流分析方法;③掌握流体运动能量转化和水头损失的规律。(2)具有对一般流动问题的分析和讨论能力,包括:①水力荷载的计算;②管道、渠道和堰过流能力的计算,井的渗流计算;6③水头损失的分析和计算。(3)掌握测量水位、压强、流速、流量的常规方法。(4)重点掌握:基础流体力学的基本概念、基本方程、基本应用。4、学习的难点与对策(1)新概念多、抽象、不易理解;对策---主要概念汇总表,多媒体资料辅助教学。(2)推演繁难;对策---分析各种推导要领,掌握通用的推导方法,理解思路,不要求对各个过程死记硬背。(3)偏微分方程(组)名目繁多。对策---仅要求部分掌握。重在理解物理意义,适用范围、条件,主要求解方法。四、流体力学的研究方法进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面:1、现场观测是对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律,并借以预测流动现象的演变。过去对天气的观测和预报,基本上就是这样进行的。不过现场流动现象的发生往往不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。2、实验室模拟同物理学、化学等学科一样,流体力学离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。模型实验在流体力学中占有重要地位。模型即是指根据理论指导,把研究对象的尺度改变(放大或缩小)以便能安排实验。有些流动现象难于靠理论计算解决,有的则不可能做原型实验(成本太高或规模太大)。这时,根据模型实验所得的数据可以用像换算单位制那样的简单算法求出原型的数据。现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。因此,实验室模拟是研究流体7力学的重要方法。3、理论分析是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下:首先是建立“力学模型”,即针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最
本文标题:《流体力学》课件
链接地址:https://www.777doc.com/doc-2798089 .html