您好,欢迎访问三七文档
-1-开卷速查(六十)变量间的相关关系与统计案例A级基础巩固练1.已知x与y之间的一组数据:x0123ym35.57已求得关于y与x的线性回归方程y^=2.1x+0.85,则m的值为()A.1B.0.85C.0.7D.0.5解析:回归直线必过样本中心点(1.5,y),故y=4,m+3+5.5+7=16,得m=0.5.答案:D2.下面是2×2列联表:y1y2总计x1a2173x2222547总计b46120则表中a,b的值分别为()A.94,72B.52,50C.52,74D.74,52解析:∵a+21=73,∴a=52,又a+22=b,∴b=74.答案:C3.工人月工资(元)依劳动产值(千元)变化的回归直线方程为y^=60+90x,下列判断正确的是()A.劳动产值为1000元时,工资为50元B.劳动产值提高1000元时,工资提高150元C.劳动产值提高1000元时,工资提高90元-2-D.劳动产值为1000元时,工资为90元解析:回归系数b的意义为:解释变量每增加1个单位,预报变量平均增加b个单位.答案:C4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由K2=nad-bc2a+bc+da+cb+d,算得K2=110×40×30-20×20260×50×60×50≈7.8.附表:P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”解析:根据独立性检验的定义,由K2≈7.8>6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该-3-项运动与性别有关”,故选C.答案:C5.某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程y^=b^x+a^中的b^为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元解析:样本中心点是(3.5,42),a^=y-b^x,则a^=y-b^x=42-9.4×3.5=9.1,所以回归直线方程是y^=9.4x+9.1,把x=6代入得y^=65.5,故选B.答案:B6.[2014·湖北]根据如下样本数据x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为y^=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0解析:根据题中表内数据画出散点图(图略),由散点图可知b<0,a>0,选B.答案:B7.某炼钢厂废品率x(%)与成本y(元/t)的线性回归方程为y^=105.492+42.569x.当成本控制在176.5元/t时,可以预计生产的1000t-4-钢中,约有__________t钢是废品.解析:∵176.5=105.492+42.569x,∴x≈1.668,即成本控制在176.5元/t时,废品率为1.668%.∴生产的1000t钢中,约有1000×1.668%=16.68t钢是废品.答案:16.688.[2014·课标全国Ⅱ]某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b^=i=1nti-tyi-yi=1nti-t2,a^=y-b^t.解析:(1)由所给数据计算得t=17(1+2+3+4+5+6+7)=4,y=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑7i=1(ti-t)2=9+4+1+0+1+4+9=28,-5-∑7i=1(ti-t)(yi-y)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b^=∑7i=1ti-tyi-y∑7i=1ti-t2=1428=0.5,a^=y-b^t=4.3-0.5×4=2.3,所求回归方程为y^=0.5t+2.3.(2)由(1)知,b^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(1)中的回归方程,得y^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.B级能力提升练9.[2014·重庆]已知变量x与y正相关,且由观测数据算得样本平均数x=3,y=3.5,则由该观测数据算得的线性回归方程可能是()A.y^=0.4x+2.3B.y^=2x-2.4C.y^=-2x+9.5D.y^=-0.3x+4.4解析:依题意知,相应的回归直线的斜率应为正,排除C、D.且直线必过点(3,3.5),代入A、B得A正确.答案:A10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y^=0.67x+54.9.-6-零件数x(个)1020304050加工时间y(min)62758189现发现表中有一个数据看不清,请你推断出该数据的值为__________.解析:由已知可计算求出x=30,而回归直线方程必过点(x,y),则y=0.67×30+54.9=75,设模糊数字为a,则a+62+75+81+895=75,计算得a=68.答案:6811.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名,为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.25周岁以上组-7-25周岁以下组(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽取一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?K2=nad-bc2a+bc+da+cb+d解析:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3)(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),故所求的概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以-8-上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:生产能手非生产能手合计25周岁以上组15456025周岁以下组152540合计3070100所以得K2=nad-bc2a+bc+da+cb+d=100×15×25-15×45260×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.
本文标题:《状元之路》2016届高考数学理新课标A版一轮总复习必修部分开卷速查60变量间的相关关系与统计案例
链接地址:https://www.777doc.com/doc-2798998 .html