您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 《药物设计》考查题及参考答案
12015年《药物设计》考查题及参考答案一、名词解释1.骨架跃迁设计从已知的活性分子结构出发,通过传统的类似物设计方法或计算化学方法,对先导化合物进行骨架设计,以发现全新的拓扑结构骨架和活性分子。2.多靶点药物设计策略通过综合分析,合理设计出选选择性的配体结构特征,并能同时作用于多靶点的药物。多靶点药物治疗,简而言之,可以同时作用于疾病网络中的多个靶点,对各靶点的作用可以产生协同效应,使总效应大于单个效应之和。多靶点药物治疗可以克服许多单靶点药物的局限性,同时调节疾病网络系统中的多个环节,不易产生抗药性,达到最佳的治疗效果。3.空间最大占有药物设计策略在药物分子设计中,往往以体积较大的基团代替体积较小的基团,其活性可能增加。如,在4-取代的芳基四唑乙酰苯胺类NNRTIs中,当用体积较大的环丙基或叔丁基取代甲基时,其对RTK103N/Y181C的抑制活性有显著提高。基团体积增加,化合物柔性变小,增加了化合物对靶点的选择性,这是活性增加的前提。4.拼合原理:将两种药物的结构拼合在一个分子内,或将两者的药效基团兼容在一个分子中,使形成的药物或兼具两者的性质,强化药理作用,减少各自相应的毒副作用;或使两者取长补短,发挥各自的药理活性,协同地完成治疗过程。5.基于核酸代谢机理的药物设计在核酸的代谢合成与代谢分解过程中,有许多酶参与其中,这些酶尤其是某些特异性的酶就成为药物设计的理想靶点;同时模拟核酸代谢过程中的底物2结构,也是药物设计的一条重要途径。核苷或核苷酸是病毒复制过程中所必需摄取的物质,通过对核苷结构的改造,可以实现对病毒复制过程的干扰。6.核苷类逆转录酶抑制剂(NRTI)NRTIs通过阻断病毒RNA的逆转录,即阻止病毒双链DNA形成,使病毒失去复制的模板而起作用。它们首先进入被感染细胞,然后磷酸化,形成具有活性的三磷酸化合物。这些三磷酸化合物是HIV逆转录酶的竞争抑制剂,当插入生长的DNA链时,可导致病毒DNA合成受阻,从而抑制病毒复制。这类抑制剂的不良反应严重,容易使病毒产生抗药性,因此与蛋白酶抑制剂联用,常会大大延长其病毒耐药性的产生,有协同效应。二、简述题1.请列举三个实例简述核苷类HIV逆转录酶抑制剂的常用设计方法。(1)具有抗耐药性的NNRTI设计策略NNRTIs-RT晶体复合物的结构揭示了具有高效耐药性的NNRTIs不同的结合模式特征。同时NNRTIs结合口袋的基本结构特征的阐明为新型抑制剂设计提供了有益的信息。•抑制剂构象的柔性和在靶点中的可适应性•抑制剂分子与氨基酸主链形成氢键作用•特异性靶向HIV–1RT的高度保守性区域•具有全新作用机制或独特结合模式的NNRTI(2)抑制剂构象的柔性和在靶点中的可适应性理论上,在抑制剂的柔性不影响抑制剂-靶点相互作用的前提下,其构象的柔性和靶点中位置的可适应性可弥补耐药突变的不良影响,避免结合的立体位阻。柔韧性的分子能通过化学键的自由旋转及位置的灵活移动来保持与变异靶点的紧密结合。二芳基嘧啶(Diarylpyrimidine,DAPY)类NNRTIs对野生型和多种耐药型HIV-1毒株均具有较高抑制活性。晶体结构表明,柔性的DAPY类分子可通过柔性扭转(摆动)和复位(微动)与不同的耐药突变的NNIBPs结合。(3)抑制剂分子与氨基酸主链形成氢键作用卡普韦林(S-1153,又名AG-1549),属于第二代NNRTI,具有比已上市NNRTIs更好的抗耐药谱,其中包括临床常见的K103N突变3株。通过对S-1153和HIV-1RT复合物的晶体结构研究发现,s-1153的结合模式非常新颖,它与p66亚基的101、103和236位残基主链间存在“网状”氢键作用。P236主链相互作用是目前为止NNRTls的特异性作用位点2.简述具有高效耐药性NNRTIs的结构特征,并举例说明NNRTIs-RT晶体复合物的结构揭示了具有高效耐药性的NNRTIs不同的结合模式特征。同时NNRTIs结合口袋的基本结构特征的阐明为新型抑制剂设计提供了有益的信息。具有高效耐药性NNRTIs的结构特征:•抑制剂构象的柔性和在靶点中的可适应性理论上,在抑制剂的柔性不影响抑制剂-靶点相互作用的前提下,其构象的柔性和靶点中位置的可适应性可弥补耐药突变的不良影响,避免结合的立体位阻。柔韧性的分子能通过化学键的自由旋转及位置的灵活移动来保持与变异靶点的紧密结合。例如:二芳基嘧啶(Diarylpyrimidine,DAPY)类NNRTIs对野生型和多种耐药型HIV-1毒株均具有较高抑制活性。晶体结构表明,柔性的DAPY类分子可通过柔性扭转(摆动)和复位(微动)与不同的耐药突变的NNIBPs结合。HBY097是另一类高效、广谱的新型NNRTI,尤其对耐NVP、α-氨基苯乙酰胺(α-APA)及苯并二氮杂卓类抑制剂(TIBO)的一些罕见变异株(如G190E)具有较高敏感性。•抑制剂分子与氨基酸主链形成氢键作用卡普韦林(S-1153,又名AG-1549),属于第二代NNRTI,具有比已上市NNRTIs更好的抗耐药谱,其中包括临床常见的K103N突变株。通过对S-1153和HIV-1RT复合物的晶体结构研究发现,s-1153的结合模式非常新颖,它与p66亚基的101、103和236位残基主链间存在“网状”氢键作用。P236主链相互作用是目前为止NNRTls的特异性作用位点。这种多重氢键作用不受氨基酸侧链突变的影响,有助于抑制剂的自由结合,从而有效地对抗RT耐药性的产生。因此,靶向于氨基酸残基主链的设计思想可能为对抗耐药性提供一个可靠的策略。4•特异性靶向HIV–1RT的高度保守性区域为了提高NNRTI的抗耐药性,应设计能与NNIBP中保守氨基酸产生特异性相互作用的抑制剂,从而降低耐药性的产生。在NNIBP中存在一个保守性区域(conservedregion),主要由p225、F227、W229、L234和Y318等组成,这些氨基酸在其他慢病毒属RT中也是高度保守的。•具有全新作用机制或独特结合模式的NNRTI为了提高NNRTI的抗耐药性,应设计能与NNIBP中保守氨基酸产生特异性相互作用的抑制剂,从而降低耐药性的产生。在NNIBP中存在一个保守性区域(conservedregion),主要由p225、F227、W229、L234和Y318等组成,这些氨基酸在其他慢病毒属RT中也是高度保守的。3.列举三种整合酶抑制剂,并简述其构效关系特点根据整合酶抑制剂化学性质和来源可将其主要分为:•二酮酸类抑制剂作用机制:该类化合物的主要特点是相对于3′端加工,它们更偏向于抑制整合酶的链转移反应。在链转移反应中,DKAs与PIC中整合酶的核心结构域的两个二价金属离子活性位点相互作用,从而竞争性的抑制宿主DNA与该位点的结合。•肽类抑制剂第一个肽类抑制剂HCKFWW是1995年发现的,它对3′端加工和链转移的抑制浓度为微摩尔级。随后设计的肽类抑制剂抑制机制主要与整合酶的二聚体作用,主要代表有INH1、INH5,他们对HIV整合酶的3′端加工和链转移过程都具有明显的抑制作用。•核苷类抑制剂该类抑制剂包括:单核苷、双核苷、三核苷及四核苷、单链、双链、三螺旋、鸟苷四聚体,它们都含有一个带负电荷的磷酸酯骨架。主要代表是AR177(Zintevir,T30177)。AR177(Zintevir,T30177)是一个鸟苷酸四聚体作用机制是干扰整合酶和DNA的结合而抑制整合过程,是第一个进入临床试验的核苷抑制剂。•天然来源抑制剂该类抑制剂主要有黄酮和多酚,生物碱,萜类化合物,植物蛋白等。相对于其它种类抑制剂,它们有来源广泛,费用低廉,副作用小的优点。尤其是一些来源植物蛋白已经显示出具有很好的抗病毒活性,能够协助改善AIDS的治疗。5•多羟基化的芳香族化合物PHAs是整合酶抑制剂中最大的一类,大部分源于天然产物,包括:咖啡酸苯乙酯(CAPE)、酸性黄(curcumin)、香豆素(coumarin)、黄酮(flavone)及黄烷酮类化合物、木酚素及其类似物、缩酚酸(depsides)及缩酚酸环醚(depsidone)等。
本文标题:《药物设计》考查题及参考答案
链接地址:https://www.777doc.com/doc-2802805 .html