您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 【优化方案】2016年高中数学第二章统计211简单随机抽样学案新人教A版必修3
-1-2.1随机抽样2.1.1简单随机抽样1.问题导航(1)什么叫简单随机抽样?(2)最常用的简单随机抽样方法有哪两种?(3)抽签法是如何操作的?(4)随机数表法是如何操作的?2.例题导读通过教材中的“思考”,我们了解抽签法的优、缺点及适用条件.1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样抽签法(抓阄法)随机数法3.随机数法的类型随机数法随机数表法随机数骰子法计算机产生的随机数法1.判断下列各题.(对的打“√”,错的打“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最小;()(2)有同学说:“随机数表只有一张,并且读数时只能按照从左向右的顺序读取,否则产生的随机样本就不同了,对总体的估计就不准确了”.()解析:(1)在简单随机抽样中,每个个体被抽到的可能性相等,与第几次抽取无关;(2)随机数表的产生是随机的,读数的顺序也是随机的,不同的样本对总体的估计相差并不大.答案:(1)×(2)×2.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()-2-A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100解析:选D.该问题中,1000名学生的成绩是总体,每个学生的成绩是个体,抽取的100名学生的成绩是样本,样本的容量是100.3.抽签法的优点、缺点各是什么?解:优点:简单易行,当总体个数不多的时候搅拌均匀很容易,每个个体有均等的机会被抽中,从而保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3.简单随机抽样中每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.-3-简单随机抽样的概念下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取20个个体作为样本;(2)从50台冰箱中一次性抽取5台冰箱进行质量检查;(3)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽取6个号签.[解](1)不是简单随机抽样.因为总体的个数是无限的,而不是有限的.(2)不是简单随机抽样.虽然“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但简单随机抽样的定义要求的是“逐个不放回地抽取”.(3)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能地进行抽样.方法归纳判断一个抽样是否为简单随机抽样的依据是其四个特征1.下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,称其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.解:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.抽签法的应用2015年,某师范大学为了支援西部教育事业,现从报名的18名免费师范毕业生中选取6人组成志愿小组,请用抽签法确定志愿小组成员,写出抽样步骤.[解]抽样步骤是:第一步,将18名志愿者编号,号码是1,2,…,18;第二步,将号码分别写在同样大小的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;-4-第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.方法归纳(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.(2)应用抽签法时应注意以下几点:①编号时,如果已有编号可不必重新编号;②号签要求大小、形状完全相同;③号签要均匀搅拌;④要逐一不放回地抽样.2.某校高一(1)班有学生48人,为了调查某种情况,打算抽取一个样本容量为10的样本,问若采用抽签法抽样将如何进行?解:首先把该校学生都编上号,号码是1,2,3,4,…,48.并制成48个形状、大小相同的号签,然后将这些号签放在一个不透明的容器内,搅拌均匀后,逐个无放回地抽取10个号签,这样就可以得到一个容量为10的样本.随机数表法的应用(2015·衡阳模拟)已知某总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表中第1行的第5列和第6列的数字开始由左到右依次选取两个数字,则选出来的第4个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01[解析]从随机数表第1行的第5列和第6列的数字开始由左到右依次选取两个数字,依次为65,72,08,02,63,14,07,…,其中08,02,14,07,…符合条件,故选B.[答案]B[互动探究]如将本例中的“从随机数表中第1行的第5列和第6列的数字开始由左到右依次选取两个数字”改为“从随机数表中第1行的倒数第2列和第3列的数字开始由右到左依次选取两个数字”,其他条件不变,则选出来的第4个个体的编号为多少?解:从随机数表中第1行的倒数第2列和第3列的数字开始由右到左依次选取两个数字,依次为91,08,27,99,63,42,07,04,13,…,其中08,07,04,13,…符合条件,故选出来的第4个个体的编号为13.方法归纳利用随机数表法抽样时应注意的问题:(1)编号要求位数相同,若不相同,需先调整到一致后再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号,那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.-5-(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.3.有一批机器编号为1,2,3,…,112,请用随机数表法抽取10台入样,写出抽样过程(随机数表见教材P103附表).解:第一步,将原来的编号调整为001,002,…,112.第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读.第三步,从“3”开始向右读,每次取三位,凡不在001~112中的数跳过去不读.前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号为074,100,094,052,080,003,105,107,083,092的机器便是要抽取的对象.易错警示因基本概念不明致误为了了解参加第27届世界大学生冬运会的2015名运动员的身高情况,从中抽取100名运动员进行调查,就这个问题,下面说法中正确的是()①2015名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.A.④⑤B.①②③C.①②④⑤D.①②③④⑤[解析]抽样的目的是了解参加冬运会的2015名运动员的身高情况,故总体应该是2015名运动员的身高,而不是这2015名运动员,同理,个体应该是每个运动员的身高,样本应该是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.[答案]A[错因与防范](1)解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.(2)解决此类问题时,关键是明确考察的对象,根据有关的概念可得总体、个体与样本的考察对象是相同的.4.(2014·高考四川卷)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A.调查的目的是“了解某地5000名居民某天的阅读时间”,所以“5000名居民的阅读时间的全体”是调查的总体.1.一个总体共有15个个体,用简单随机抽样的方法从中抽取一个容量为5的样本,每个个体被抽到的可能性是()-6-A.13B.15C.110D.115解析:选A.简单随机抽样具有等可能性,每个个体被抽到的可能性是515=13.2.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.从20个零件中一次性抽出3个进行质量检查C.某学校分别从行政人员、老师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验解析:选D.根据简单随机抽样的定义及特点可判断D为简单随机抽样.3.在某年的高考中,A省有20万名考生,为了估计他们的数学平均成绩,从中逐个抽取2015名学生的数学成绩作为样本进行统计分析,请回答以下问题:本题中,总体、个体、样本、样本容量各指什么?解:总体是指在该年的高考中,A省20万名考生的数学成绩;个体是指在该年的高考中,A省20万名考生中每一名考生的数学成绩;样本是指被抽取的2015人的数学成绩;样本容量是2015.[A.基础达标]1.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是()A.1100B.125C.15D.14解析:选C.简单随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.故选C.2.(2015·昌乐二中检测)用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为()A.①②③④B.①③④②C.③②①④D.④③①②解析:选B.先编号,再选数.3.下列抽样试验中,适合用抽签法的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验解析:选B.A、D中个体总数较大,不适合用抽签法;C中甲、乙两厂生产的两箱产品性-7-质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.4.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是()A.①②B.①③C.②③D.③解析:选C.根据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.5.(2015·青岛检测)对于简单随机抽样,下列说法中正确的为()①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④解析:选D.这四点全是简单随机抽样的特点.6.下列调查的样本合
本文标题:【优化方案】2016年高中数学第二章统计211简单随机抽样学案新人教A版必修3
链接地址:https://www.777doc.com/doc-2807593 .html