您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 三角变换常用公式汇总(包含特殊角特殊值等)
1以下关系,函数名不变,符号看象限sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα以下关系,奇变偶不变,符号看象限sin(90°-α)=cosαcos(90°-α)=sinαtan(90°-α)=cotαcot(90°-α)=tanαsin(90°+α)=cosαcos(90°+α)=sinαtan(90°+α)=-cotαcot(90°+α)=-tanαsin(270°-α)=-cosαcos(270°-α)=-sinαtan(270°-α)=cotαcot(270°-α)=tanαsin(270°+α)=-cosαcos(270°+α)=sinαtan(270°+α)=-cotαcot(270°+α)=-tanα------------------------------------------------------------------------------------------------------------------------三角函数常用公式:同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβ2tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]3度弧度001011518度弧度22.53023645115460267.572754901001120135150218000表中表示,(即左、右极限).一个锐角的余角的三角函数值等于这个角的余三角函数值,例如,,.
本文标题:三角变换常用公式汇总(包含特殊角特殊值等)
链接地址:https://www.777doc.com/doc-2808479 .html