您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 【第十四讲】FIR滤波器的最佳逼近
第1页南昌大学科学技术学院教案课程名称数字信号处理授课时间周,星期,节(年月日)课次授课方式■理论课□实验课□其他学时2授课题目FIR滤波器的最佳逼近目的与要求:重点与难点:教具(多媒体、模型、图表等):板书、多媒体第2页南昌大学科学技术学院教案教学内容教学方法时间分配阐述+提问随堂掌握课堂设问:教学内容小结:复习思考题或作业题:教学后记(此项内容在课程结束后填写):南昌大学科学技术学院讲稿7.6FIR滤波器的最佳逼近采用窗函数法设计FIR滤波器方法简单,通常会得到一个性能相对很好的滤波器。但是在以下两个方面的问题,这些滤波器的设计还不是最优的:(1)通带和阻带的波动基本上相等,虽然一般需要δ2小于δ1,但是在窗函数法中不能分别控制这些参数。所以,窗函数法需要在通带内对滤波器“过设计”(即通带内的技术指标超过所要求的技术指标),这样才能满足阻带的严格要求。(2)对于大部分窗函数来说,通带内或阻带内的波动不是均匀的,通常离开过渡带时会减小。若允许波动在整个通带内均匀分布,那么就会产生较小的峰值波动。另一方面,对于一个给定的滤波器阶数M(M=N-1),在所有频带内波动的幅度最小。在这个意义上说,等波纹线性相位滤波器是最优的。所以,等波纹线性相位滤波器设计法又称为等波纹最佳一致逼近设计法。一个FIR线性相位滤波器的频率响应可以写成(7-123)式中,幅度H(ω)是ω的实值函数。对于第一类线性相位滤波器h(n)=h(N-1-n)式中,N是奇数。利用h(n)的对称性可以将频率相应表示为ajjeHeH)()(LkkkaH0)cos()()((7-124)式中,L=(N-1)/2,且有:Hd(ω)是期望的幅度;W(ω)是一个正的误差加权函数,它是为在通带或阻带要求不同的逼近精度而设计的。一般地,在要求逼近精度高的频带,W(ω)取值大;要求逼近精度低的频带,W(ω)的取值小。设计过程中W(ω)为已知函数。设E(ω)=W(ω)[Hd(ω)-H(ω)]是一个加权逼近误差。等波纹滤波器设计问题就是求系数a(k),要求在一组频率F上使E(ω)的最大绝对值最小,例如,为了设计一个低通滤波器,频率组F可以是通带[0,ωp]和阻带[ωs,π]内的频率,如图7-29所示。过渡带[ωp,ωs]是不关心的区域,求加权误差最小时不作考虑,此时可以采用交错定理求这个最优化问题。21)(21)0(NkhkaNha21,,2,1Nk|})(|max{min)(EFkaH()1+121-11ops不关心区域F图7-29等波纹滤波器设计中的频率组,包括通带[0,ωp]和阻带[ωs,π]过渡带[ωp,ωs]是不关心的区域交错定理:设F是[0,π]区间内封闭子集的并集,对于一个正的加权函数W(ω),在F上,H(ω)能成为惟一使加权误差|E(ω)|最大值最小的函数。其充要条件是:在F上E(ω)至少有L+2个交错值。也就是说,在F上必须至少有L+2个极值频率,ω0ω1…ωL+1这样E(ωk)=-E(ωk+1)k=0,1,…,L且k=0,1,…,L+1交错定理说明最优滤波器是等波纹的。虽然交错定理确定了最优滤波器必须有的极值频率(或波动)最少数目,但是可以有更多的数目。例如,一个低通滤波器可以有L+2个或L+3个极值频率,有L+3个极值频率的低通滤波器称作超波纹滤波器。由交错定理可以得到:W(ωk)[Hd(ωk)-H(ωk)]=(-1)kεk=0,1,…,L+1LkkkaH0cos)()(|)(|max|)(|EEFk式中,是最大的加权误差绝对值,这些关于未知数a(0),…,a(L)以及ε的方程可以写成下面矩阵的形式:给定了极值频率,就可以解关于a(0),…,a(L)以及ε的方程。为了求极值频率,可以采用一种高效的迭代过程,称作帕克斯-麦克莱伦(ParksMcClellan)算法。具体步骤如下:①估计一组初始极值频率(可任选)。②解方程(7-113)求ε,可以证明ε的值为式中:③利用拉格朗日插值公式在极值频率之间插值,计算F上的加权误差函数。④先选择使插值函数最大的L+2个频率,然后再选择一组新的极值频率。|)(|maxEF)()()()()()1()0()(/)1()cos()cos(1)(/)1()cos()cos(1)(/1)cos()cos(1)(/1)cos()cos(111011111111000LdLdddLLLLLLLHHHHLaaaWLWLWLWL1010)(/)()1()()(LkkkLkkdWkbHkb)cos()cos(1)(1,0ikLkiikb⑤如果极值频率改变了,从步骤②开始重复迭代过程。一个设计公式可以用来计算一个低通滤波器的等波纹滤波器阶数,过渡带宽度为Δf,通带波动为δ1,阻带波动为δ2,该公式为(7-114)7.7FIR等波纹设计举例例7-12设计一个等波纹低通滤波器,通带截止频率ωp=0.3π,阻带截止频率ωs=0.3π,通带波动δ1=0.01,阻带波动δ2=0.001。解利用式(7-101)计算滤波器阶数,求由于我们希望阻带内的波动比通带内的波动小10倍,所以必须采用加权函数对误差加权:图7-30101)(W0≤|ω|≤0.3π0.35π≤|ω|≤πfN6.1413)lg(10211026.1413)lg(1021fN20lg|H(ej)|/dB0-20-40-60-80/4/2/4实际中,一般调用MATLAB信号处理工具箱函数remezord来计算等波纹滤波器阶数N和加权函数W(ω),调用函数remezord直接求滤波器的单位脉冲响应h(n)。例7-13设计一个等波纹低通滤波器,通带截止频率ωp=0.6π,阻带截止频率ωs=0.8π,通带波动δ1=0.1,阻带波动δ2=0.1。7.8FIR滤波器和IIR滤波器的比较首先,从性能上说,IIR滤波器可以用较少的阶数获得很高的选择特性,这样一来,所用存储单元少,运算次数少,较为经济而且效率高。但是这个高效率的代价是以相位的非线性得来的。选择性越好,非线性越严重。相反,FIR滤波器可以得到严格的线性相位。但是,如果M=281=0.12=0.1※※※※※※※※※※※☆☆需要获得一定的选择性,则要用较多的存储器和较多的运算,成本比较高,信号延时也较大。然而,FIR滤波器的这些缺点是相对于非线性相位的IIR滤波器比较而言的。如果按相同的选择性和相同的相位线性要求的话,那么,IIR滤波器就必须加全通网络来进行相位校正,因此同样要大大增加滤波器的节数和复杂性。所以如果相位要求严格一点,那么采用FIR滤波器不仅在性能上而且在经济上都将优于IIR。从结构上看,IIR必须采用递归型结构,极点位置必须在单位圆内;否则,系统将不稳定。此外,在这种结构中,由于运算过程中对序列的四舍五入处理,有时会引起微弱的寄生振荡。相反,FIR滤波器主要采用非递归结构,不论在理论上还是在实际的有限精度运算中都不存在稳定性问题,运算误差也较小。此外,FIR滤波器可以采用快速傅里叶变换算法,在相同阶数的条件下,运算速度可以快得多。从设计工作看,IIR滤波器可以借助模拟滤波器的成果,一般都有有效的封闭函数的设计公式可供准确的计算。又有许多数据和表格可查,设计计算的工作量比较小,对计算工具的要求不高。FIR滤波器设计则一般没有封闭函数的设计公式。窗口法虽然仅仅对窗口函数可以给出计算公式,但计算通阻带衰减等仍无显式表达式。一般,FIR滤波器设计只有计算程序可循,因此对计算工具要求较高。此外,还应看到,IIR滤波器虽然设计简单,但主要是用于设计具有片段常数特性的滤波器,如低、高、带通及带阻等,往往脱离不了模拟滤波器的格局。而FIR滤波器则要灵活的多,尤其是频率采样设计法更容易适应各种幅度特性和相位特性的要求,可以设计出理想的正交变换、理想微分、线性调频等各种重要网络。因而有更大适应性和更广阔的天地。从以上简单比较我们可以看到IIR滤波器与FIR滤波器各有所长,在实际应用时要从多方面考虑来加以选择。从使用要求来看,如对相位要求不敏感的语言通讯等,选用IIR较为合适。而对图像信号处理、数据传输等以波形携带信息的系统,一般对线性相位要求较高,这时采用FIR滤波器较好。当然,在实际设计中,还应综合考虑经济上的要求以及计算工具的条件等多方面的因素。本章小结本章是本课件的一个重点.主要介绍了IIR滤波器与FIR激光器的设计方法.IIR滤波器的双线性变换与冲激响应不变法与FIR滤波器的窗函数法与频率采样法.也是很多高校考研命题的重点内容第页总页
本文标题:【第十四讲】FIR滤波器的最佳逼近
链接地址:https://www.777doc.com/doc-2810560 .html